
P2P-based PVR Recommendation using
Friends, Taste Buddies and Superpeers

Johan Pouwelse, Michiel van Slobbe, Jun Wang, Marcel J.T. Reinders, Henk Sips
Faculty of Electrical Engineering, Mathematics and Computer Science,

Delft University of Technology,
Delft, The Netherlands

j.a.pouwelse@ewi.tudelft.nl

ABSTRACT

In this paper we present a novel distributed recommendation
method based on exchanging similar playlists among taste
buddies, which takes into account the limited availability of
peers, lack of trust in P2P networks, and dynamic identities
of peers, etc. Our preliminary experiment shows that only
exchanging a small portion of similar playlists from taste
buddies could lead to an efficient way to calculate recom-
mendations within a context of P2P networks.

Keywords

Collaborative filtering, recommendation, peer-to-peer, su-
perpeers, taste buddies

INTRODUCTION

The world of Television is finally meeting the PC world. The
TV-capture card is becoming a standard PC accessory. Prod-
ucts from television-oriented companies now have to directly
compete with products from PC-oriented companies.

Personal Video Recorder

The arrival of the Personal Video Recorder (PVR) is chang-
ing the way people watch TV. A PVR enables people to
record TV programs on a hard disk. This sounds similar to a
common VCR, but the selection of which program to record
is much easier. A PVR uses an Electronic Program Guide
(EPG) to show the user which programs are broadcasted by
a TV station at a certain time. Due to the information in
this EPG a PVR can be instructed to, for example, record the
program Boston Public:

Copyright is held by the author/owner(s).
Workshop: Beyond Personalization 2005
IUI’05, January 9, 2005, San Diego, California, USA
http://www.cs.umn.edu/Research/GroupLens/beyond2005

• in this timeslot at this TV station

• any time it is shown on this TV station

• every episode broadcasted on any station

Video compression techniques and ever growing storage ca-
pacity ensure that ten of hours of television can be recorded
on a PVR. Studies have shown that PVR users shift from
watching live TV towards watching the programs on their
hard disk. After a few days or weeks of usage, PVR users
become less aware of which TV station they are watching
and fast-forward through commercials.

The Tivo was the first Consumer electronics (CE) based PVR
in the marketplace. Hardware MPEG encoding was used to
compress the video stream before storage on the hard disk.
Recently, PVR-like functionality was no longer bound to CE
hardware with the arrival of PC software such as MythTV 1

on Linux and the Microsoft Media Center Edition of Win-
dows XP 2.

Recommendation

A recommender system can be defined as: a system which
“has the effect of guiding the user in a personalized way
to interesting or useful objects in a large space of possible
options”[24].

A PVR recommendation system observes users TV watch-
ing habits either explicitly or implicitly in order to calculate
a recommendation [2, 3, 12, 19]. A recommender system
can build an explicit profile of a user. Such a profile is filled
explicitly by the users ratings. For example, preferred chan-
nels, favorite genres, hated actors, etc. An implicit profile
is based on passive observations and contains the TV watch-
ing habits with channel surfing actions. We believe that ask-
ing the user to rate programmes is annoying and should be
avoided when possible, we therefore use implicit profiles.

A TV recommendation system can either work stand-alone,
by using only content descriptions (content based) [2, 12],
or by collaborating and exploiting the profiles of other users

1http://www.mythtv.org/
2http://www.microsoft.com/windowsxp/mediacenter/default.mspx

(collaborative filtering based) [5, 6, 14, 17, 18, 27], or by
combining both of them (hybrid) [3, 19, 24]. In this paper
we focus on collaborate filtering based recommendation due
to its simplicity and high quality.

Recently, a few early attempts towards decentralized collab-
orative filtering have been made [6, 13, 22]. Canny [6, 7]
proposed a distributed EM (Expectation Maximization) up-
date scheme. However, the update is partially distributed
since a ”totaler” (server) is still required to connect with all
the peers. In [13], a DHTs based technique was proposed
to store the user rating data. Those solutions aimed to col-
lect rating data to apply the centralized collaborative filter-
ing and they hold independently of any semantic structure of
the networks. This inevitably increases the volume of traffic
within the networks. In [30], we introduced fully distributed
item-based collaborative filtering algorithm. The similarity
between content (items) are derived from the profiles of the
different users and stored in a distributed and incremental
way as item-based buddy tables. By using the item-buddy
tables, items are organized in the form of relevance links.
Recommendation can then be done according to the similar-
ities stored in the item-buddy tables.

Different with the above approaches, we take into account
the limited availability of peers, lack of trust, and dynamic
identities of peers in P2P networks. For each target user, our
method selects a set of users profiles by measuring the simi-
larity to that user. The top-N similar users are then identified
in a fully distributed manner and their profiles are employed
to make recommendations.

Peer-to-Peer

Peer-to-Peer (P2P) technology is best known for its P2P file
sharing programs such as Napster, Kazaa, and Bittorrent.
One definition of P2P is “a class of applications that takes ad-
vantage of resources – storage, cycles, content, human pres-
ence – available at the edges of the Internet” [26].

A general property of P2P technology is its often disruptive
nature. This property arises from the fact that P2P technol-
ogy eliminates central controlling points in both a technical
and business sense.

In this paper we use P2P-based sharing of the detailed TV
watching habits. The P2P technology must distribute this in-
formation and propagate updates. Several papers focus on a
method called “epidemic distribution” to disseminate infor-
mation [9, 10]. Epidemic distribution is based on forwarding
information to a set of randomly selected peers. New infor-
mation from a single source peer is then quickly spread out to
numerous peers. This information dies out when nodes have
already received this information and no longer forward it to
others. This is an example of undirected spreading of infor-
mation or gossiping without a central server.

When peers share a common interest, such as the same
TV programs, it is possible to form “virtual communities”
around such common interests. When common interests are

identified it is possible to spread updates of information us-
ing less bandwidth, thus in a more efficient manner.

PROBLEM DESCRIPTION

The aim of this paper is to produce a scalable, near-zero
cost solution for television content recommendation on PVR-
style devices using P2P technology. The scalability aspect is
important because few recommendation algorithms scale to
millions of users and millions of (archived) television pro-
grams to recommend [17]. The aim of creating a near-zero
cost solution is motivated by the desire to make a PVR which
is not dependant on a central recommendation server. In this
paper we will show that P2P technology can replace such a
central server which is difficult to scale, contains a wealth of
privacy sensitive information, and may require a subscription
fee. Recommendations should be calculated in a distributed
fashion by the PVRs themselves. The remaining cost for
generating a recommendation are then only the modest cost
for communication between PVRs and PVR processor usage
cost.

Given this aim, we can derive two problem domains. First
the collaborative filtering algorithms and second the distri-
bution of TV watching habits using P2P technology. Nu-
merous publications focus on improvements of collaborative
filtering algorithms. In this paper we do not try to improve
existing collaborative filtering algorithms, but to solve the
problems which emerge when the most effective algorithms
are applied in a P2P setting. The problems we solved are not
unique to our recommendation context, but pose a problem
in the general P2P domain. We solved the following four
P2P-related problem in the context of recommendations:

• Short peer uptime

• Dynamic IP addresses

• Lack of trust

• Selfish behavior

The uptime of a networked PVR is short because many peo-
ple will deactivate their PVR after use to spare electricity.
Each peer in the PVR network may also fail at any time due
to, for example, termination of the Internet connection. This
creates a severe challenge as the distributed recommender
needs to have a high availability, but the underlying PVRs
have limited availability.

The usage on the Internet of fixed IP numbers is becoming
less common. The usage of dynamic IP numbers (DHCP),
firewalls, and NAT boxes results in what we call the dynamic
identity problem, it becomes impossible to directly contact
or to guess the IP number of a peer which comes on-line.
When all peers in a network use fixed IP numbers it is trivial
to contact a previously known peer.

The intermitted on-line/off-line behavior of peers greatly
amplifies the severity of the dynamic identity problem. This

amplified problem arises, for example, when two PVR de-
vices with dynamic identities want to exchange information
for a P2P recommendation algorithm on a daily basis. When
these two PVRs are only simultaneously on-line for a part of
the day, it is impossible for them to rendezvous again without
a third peer. When the two peers are both behind a firewall,
a deadlock even arises because both need to take the initia-
tive to puncture their firewall [21]. We call this amplified
problem the rendezvous deadlock problem.

Another issue in P2P networks is the lack of trust. The ex-
perience with P2P file sharing systems shows that maintain-
ing system integrity while using donated resources from un-
trusted peers is problematic [23]. We define integrity as the
ability to ensure that a system operates without unauthorized
or unintended modification of any of its components. Cal-
culating recommendations is vulnerable to integrity attacks.
Dedicated fans could attack the integrity of the system by, for
instance, spreading bogus TV watching habits on a certain
TV program. The bogus information would then raise the
number of people which have this program recommended.
Integrity of P2P systems in general has received little atten-
tion from academia. A unique study found that for popular
songs on the Kazaa P2P file sharing, up to 70 % of the dif-
ferent versions are polluted or simply fake [16].

Data at several levels in the system can be attacked, namely
system information, meta-data level, and the raw data (con-
tent) itself. If a P2P system needs to have any integrity the
following rule must be followed: All data obtained from
peers in a P2P network is by definition untrusted and must
be labeled with its origin and (implicit) trust level. It is a
significant challenge to calculate recommendations and take
into account trust levels.

The last problem is the selfish behavior of people. The whole
concept behind P2P technology is to pool resources together
and use them to deliver services. The resource economy
is by definition balanced: resources are not created out of
thin air. For instance, in the case of bandwidth, every down-
load MByte has an uploaded MByte. The first challenge in a
P2P network is preventing that people do not donate any re-
sources, and are thus freeriding on others. In one of the first
studies (August 2000) related to freeriding [1], over 35,000
Gnutella peers where followed for one day. Nearly 70 % of
the peers did not contribute any bandwidth. We define fair-
ness in a P2P system as the level to which each user gets
back as many resources from the system as they donated.

To calculate distributed recommendations, each peer needs
to share its TV watching habits and send regular updates of
newly watched programs. Without an incentive to share this
privacy, peers will freeride due to their selfish nature. The
challenge is thus to create an incentive to share TV watching
habits.

Year Month Daily TV Minutes
2002 November 190.1
2002 December 204.5
2003 Januari 216.3
2003 February 202.0
2003 March 202.1
2003 April 187.0
2003 May 173.2

Table 1: Average amount of daily television watching in The
Netherlands (Source: [28]).

SOLUTION

Our solution to the above four problems is based on three
ideas. First, we identify the most reliable peers in the net-
work of PVRs and turn them into superpeers with increased
responsibilities. Preferably, these nodes have a fixed IP ad-
dress. This solves the reliability issues and creates stable
node to solve the dynamic identities and rendezvous dead-
lock problem. Second, each PVR identifies the peers with
similar TV taste to efficiently exchange TV watching habits
(and updates). This is the method for distributing the collab-
orative filtering. We present simulation results showing the
recall rate of our method for distribution. Third, the end-user
must enter in the PVR which other PVR users are his friends
to build a network of trust. By using this information we can
calculate who is a friend, friend-of-a-friend, etc. and use this
to information improve our second idea.

Superpeers

We first explore the problem of limited uptime in more depth
before we discuss the superpeer idea. Table 1 shows the av-
erage number of minutes people where watching television
in The Netherlands [28]. From these numbers we can derive
a first estimate for PVR uptime, if we assume that a PVR
is only online when the attached television is in use. These
number indicate that the average peer uptime is roughly be-
tween 170 and 215 minutes, depending on the season.

Instead of merely the average uptime, it is also important to
know the distribution of uptime between PVR nodes. A good
source of information on the great diversity in peer uptime is
from the field of P2P file sharing. We assume that the PVR
uptime will show some similarity to peer uptime in P2P file
sharing networks and therefore discuss it at length.

Several measurement studies of P2P file sharing networks
have addressed the issues of peer availability [4, 8, 11, 25].
Most of the availability studies only span a few days [4] or
weeks [8], making it difficult to draw conclusions on long-
term peer behavior.

In P2P file sharing networks, a very small fraction of the
peers has a high uptime (measured in weeks) because they
are never turned off and have a reliable Internet connection.
We believe that for networked PVR systems, a small percent-
age of users will leave their PVR on continuously.

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000

P
ee

r
up

tim
e

[h
ou

rs
]

Peer uptime ranking

Content lifetime

Figure 1: The uptime distribution of 53,833 peers on the Bit-
torrent P2P file sharing network (Source: [23]).

In a previous study the authors measured peer availability
for over three months in the Bittorrent P2P file sharing sys-
tem [23].

On December 10, 2003 the popular PC game “Beyond Good
and Evil” from Ubisoft was injected into BitTorrent using
the web site Suprnova.org and on March 11, 2004 it died.
We measured the uptime of 53,883 peers which downloaded
this content.

Figure 1 shows the results of our uptime measurements.
Here we plot the peer uptime in hours after they have fin-
ished downloading. The horizontal axis shows the individ-
ual peers, sorted by uptime. The time scale for the uptime
ranges from 3 minutes to nearly 7 months. The longest up-
time is 83.5 days. Note that this log-log plot shows an almost
straight line between peer 10 and peer 5,000. The sharp drop
after 5,000 indicates that the majority of users disconnect
from the system within a few hours after the download has
been finished. This sharp drop has important implications
because the actual download time of this game spans several
days. Figure 1 shows that peers with a high availability are
rare. Only 9,219 out of 53,883 peers (17 %) have an uptime
longer than one hour after they finished downloading. For 10
hours this number has decreased to only 1,649 peers (3.1 %),
and for 100 hours to a mere 183 peers (0.34 %).

From the Bittorrent measurements we conclude that a very
small group of peers is significantly more reliable than the
average peer. Some Bittorrent users leave their computer
running for days and we assume a small percentage of PVR
users will also leave their device on for days or perhaps even
permanently.

We exploit this knowledge on the skewed distribution of up-
time in the superpeer idea. A supernode is “a peer which
has a heightened function, accumulating information from
numerous other peers”, according to the definition used in
the MGM studios versus Grokster case [29]. The Kazaa
file sharing system uses superpeers to implement a fast file
search algorithm and NAT traversal [15]. We use this con-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 10 100 1000

R
ec

al
l r

at
e

(w
ith

in
 to

p5
0

re
su

lts
)

Number of playlists

Taste buddies
Random

Figure 2: Comparison of the performance for random peer
contacts and taste buddy contact only.

cept to distributed the recommendation.

Our solution works as follows. Each PVR keeps a large
list of other peers it has seen on the network. The average
uptime of each peer is used to sort this list from most re-
liable peer to least reliable peer. PVRs can exchange such
lists and can thus discover the IP addresses of new PVRs.
Note that the bandwidth requirements from exchanging such
lists are modest because IP number and timestamps only re-
quire a few bytes. Each peer can request any other peer to
store its current IP number. Reliable peers receive many of
such requests and automatically become a reliable source of
information to overcome the dynamic identity problem and
the rendezvous deadlock problem. When peers come online
they register their current IP number at multiple superpeers,
allowing others to find them again.

Without any load balancing measures this superpeer algo-
rithm would quickly overwhelm the most reliable peers in
the network with numerous requests. We will use the friends
concept to implement load balancing. Peers prefer to store
their current IP number on reliable peers which belong to a
friend, friend-of-a-friend, etc.

The benefit of our superpeer method is its simplicity and low
overhead. It does not offer any guarantees that the new IP
number of a peers becomes known to all, but in our architec-
ture this is also not required.

Taste buddies

This section explains our solution to calculate accurate rec-
ommendations with information exchanges with just a few
peers. We present simulation results which show that reg-
ular exchanges of TV habits with 100 peers is sufficient to
achieve a good recommendation recall rate.

The central concept in our taste buddy idea is the exchange
of TV habbits which are stored in playlists. A playlist is a
complete list of programs which the user has seen in the past
or explicitly programmed for recording in the future. Thus,
a sufficiently large number of playlists will also contain in-

formation about content which is not even broadcasted.

A simple method to exchange playlists is to contact a random
peer and swap playlists. The implementation of this random
peer contact method requires only a procedure to obtain IP
addresses of peers. Due to the lack of trust in a P2P network,
a minimal amount of contact with other peers is desired. Es-
pecially for the exchange of playlists because less contact
lower the risk of integrity attacks.

Instead of contacting peers at random, we use a cosine sim-
ilarity function [5] to identify peers with similar playlists.
This ensures that we obtain playlists from our taste buddies
only. We then apply the Amazon collaborative filtering al-
gorithm [17] on these collected similar playlists to calculate
the recommendations.

We used the MovieLens data-set [20] to evaluate the perfor-
mance. We divided the MovieLens database into a training
part and a testing part. We use 20 % of a users best-rated
movies as the testing set. Recall rate is employed to measure
the performance. It measures the proportion of the ground
truth (GT) of the liked-items that are really recommended,
which is shown as follows:

Recall =
|liked items(GT) ∩ recommended items|

|liked items(GT)|
(1)

where |S| indicates the size of the set S.

The recall is calculated from the return of the Top-50 highest-
ranking recommended items. We compare the recall of our
taste-buddy approach to the random peer contact approach,
shown in Figure 2. We varied the number of playlists which
are collected to calculate a recommendation. Each data point
shows the average for over 100 different runs of the rec-
ommendation. From the left to right side, playlists are ex-
changed from one single user to all the users, up to the size
of the data-set (6,040 users).

From the figure, we observed that:

• In general, our taste-buddy approach outperforms the
random peer contact approach. The performances of the
two approaches converge when the playlists are fully
collected.

• The recall rate of our taste-buddy approach increases
with the number of the collected similar playlists in-
creases. It reaches the peak when collecting about 130
similar playlists. Then the performance decreases as the
number of the collected playlists increases. Contrarily,
the recall rate of the random peer contact keeps increas-
ing as the number of the collected playlists increases.

From these results we can conclude that only a small por-
tion of taste buddies (similar playlists) are needed to calcu-
late accurate recommendations. In a network of millions of
PVRs, the similarity function can be used to quickly identify
the peers with similar taste. We expect that this network will
quickly cluster taste buddies together. The superpeer concept

Figure 3: Debugging view of the MythTV implementation.

needs to ensure that each peer comes into contact with many
peers while the similarity function will ensure the clustering.

Friends

To solve the trust issue in a P2P network, we ask the user to
identify his/her real-world friends. By using social software
similar to Orkut.com we can identify the social relation
and distance to the users of two PVR nodes. This means that
the PVR knows who your friends, friends-of-friends, etc. are
on the Internet and exploit this information to ensure system
integrity.

The research area of social-aware PVRs is still poorly un-
derstood. The idea is to set hard thresholds on the maximum
social distance that a supernode user or taste buddie can be.
The simple hard threshold is easy to implement and already
provides a solid method to guard integrity. The concept of
friends also reduces the selfish behavior, you do not freeride
on your social friends.

IMPLEMENTATION

We are currently implementing all our ideas in the MythTV
Open Source PVR (MythTV.org). Figure 3 depicts the
inner working of this implementations. We created a dae-
mon which is able to show and exchange playlists. This dae-
mon has a command line interface with basic display and
exchange commands.

Figure 4 shows the output of the Amazon recommendation
algorithm which is now fully integrated within MythTV. We
are currently looking into distributing our MythTV recom-
mender to a large number of people to get feedback and to
make some improvements.

Discussion & Conclusion

We have identified four problems when recommendations
are distributed in a P2P network which are limited uptime,
dynamic identities, lack of trust, and selfish behavior.

Figure 4: MythTV implementation screenshot.

By using our ideas of superpeers, taste buddies, and friends
we are able to address all four problems.

We have implemented a distributed recommender using P2P
technology and are currently testing its limits.

REFERENCES
1. E. Adar and B. A. Huberman. Free riding on gnutella. Techni-

cal report, Xerox PARC, August 2000.

2. L. Ardissono, A. Kobsa, and M. Maybury, editors. Person-
alized Digital Television: Targeting Programs to Individual
Viewers. Kluwer Academic Publishers, 2004.

3. C. Basu, H. Hirsh, and W. W. Cohen. Recommendation as
classification: Using social and content-based information in
recommendation. In AAAI/IAAI, pages 714–720, 1998.

4. R. Bhagwan, S. Savage, and G. M. Voelker. Understanding
availability. In International Workshop on Peer to Peer Sys-
tems, Berkeley, CA, USA, February 2003.

5. J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis
of predictive algorithms for collaborative filtering. In Proc. of
UAI, 1998.

6. J. Canny. Collaborative filtering with privacy via factor analy-
sis. In Proc. of ACM ICIR, 1999.

7. J. Canny. Collaborative filtering with privacy. 2002.

8. J. Chu, K. Labonte, and B. Levine. Availability and locality
measurements of peer-to-peer file systems. In ITCom: Scala-
bility and Traffic Control in IP Networks, Boston, MA, USA,
July 2002.

9. P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Mas-
soulie. From epidemics to distributed computing. IEEE Com-
puter, 2004.

10. A. J. Ganesh, A.-M. Kermarrec, and L. Massouli. Peer-to-peer
membership management for gossip-based protocols. IEEE
Trans. Comput., 52(2):139–149, 2003.

11. K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and
J. Zahorjan. Measurement, modeling, and analysis of a peer-
to-peer file-sharing workload. In 19-th ACM Symposium on
Operating Systems Principles, Bolton Landing, NY, USA, Oc-
tober 2003.

12. S. Gutta, K. Kurapati, K. P. Lee, J. Martino, J. Milanski, J. D.
Schaffer, and J. Zimmerman. Tv content recommender sys-
tem. In Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on Innova-
tive Applications of Artificial Intelligence, pages 1121–1122.
AAAI Press / The MIT Press, 2000.

13. P. Han, B. Xie, F. Yang, and R. Sheng. A scalable p2p rec-
ommender system based on distributed collaborative filtering.
Expert systems with applications, 2004.

14. T. Hofmann and J. Puzicha. Latent class models for collabora-
tive filtering. In Proc. of IJCAI, 1999.

15. J. Liang, R. Kumar, and K. Ross. The kazaa overlay: A mea-
surement study. September 2004.

16. J. Liang, R. Kumar, Y. Xi, and K. Ross. Pollution in p2p file
sharing systems. In IEEE Infocom, Miami, FL, USA, March
2005.

17. G. Linden, B. Smith, and J. York. Amazon.com recommenda-
tions: Item-to-item collaborative filtering. IEEE Internet Com-
puting, 7(1):76–80, 2003.

18. B. Marlin and R. S. Zemel. The multiple multiplicative factor
model for collaborative filtering. In Proc. of ICML, 2004.

19. P. Melville, R. Mooney, and R. Nagarajan. Content-boosted
collaborative filtering. In ACM SIGIR Workshop on Recom-
mender Systems, Sept. 2001.

20. MovieLens dataset, as of 2003. http://www.
grouplens.org/data/.

21. T. Oh-ishi, K. Sakai, T. Iwata, and A. Kurokawa. The de-
ployment of cache servers in p2p networks for improved per-
formance in content-delivery. In Third International Confer-
ence on Peer-to-Peer Computing (P2P’03), Linkoping, Swe-
den, September 2003.

22. T. Oka, H. Morikawa, and T. Aoayama. Vineyard : A collabo-
rative filtering service platform in distributed environment. In
Proc. of the IEEE/IPSJ Symposium on Applications and the In-
ternet Workshops, 2004.

23. J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. A measure-
ment study of the bittorrent peer-to-peer file-sharing system.
Technical Report PDS-2004-007, Delft University of Technol-
ogy, Apr. 2004.

24. R.Burke. Hybrid recommender systems: Survey and experi-
ments. User Modeling and User-Adapted Interaction, 2002.

25. S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. In Multimedia
Computing and Networking (MMCN’02), San Jose, CA, USA,
January 2002.

26. C. Shirky. What is p2p... and what isn’t, 2000.
http://www.openp2p.com/pub/a/p2p/2000/
11/24/shirky1-whatisp2p.html.

27. L. Si and R. Jin. Flexible mixture model for collaborative fil-
tering. In Proc. of ICML, 2003.

28. Stichting KijkOnderzoek. Resultaten van het onderzoek, 2004.
http://www.kijkerspanel.nl/resultaten.php.

29. S. V. W. United States District Court, Central District of Cal-
ifornia. Mgm studios versus grokster; opinion granting def.
motions for partial summary judgment, 2003. http://www.
eff.org/IP/P2P/MGM_v_Grokster/.

30. J. Wang, M. J. T. Reinders, R. L. Lagendijk, and J. Pouwelse.
Self-organizing distributed collaborative filtering. Submitted
to WWW05, Oct 2004.

