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ABSTRACT

Personal gazetteers record individuals’ most important
places, such as home, work, grocery store, etc. Using per-
sonal gazetteers in location-aware applications offers addi-
tional functionality and improves the user experience. How-
ever, systems then need some way to acquire them.

This paper explores the use of novel semi-automatic tech-
niques to discover gazetteers from users’ travel patterns
(time-stamped location data). There has been previous
work on this problem, e.g., using ad hoc algorithms [13]
or K-Means clustering [4]; however, both approaches have
shortcomings. This paper explores a deterministic, density-
based clustering algorithm that also uses temporal tech-
niques to reduce the number of uninteresting places that
are discovered. We introduce a general framework for eval-
uating personal gazetteer discovery algorithms and use it to
demonstrate the advantages of our algorithm over previous
approaches.
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H.3.3 [Information Search and Retrieval]: Clustering

General Terms

Algorithms, Human Factors

Keywords

Personal gazetteer, Personal places, Location-aware, Spatio-
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1. INTRODUCTION

As mobile devices become location-aware, they offer the
promise of powerful new applications, such as location-
enhanced instant messaging [10] and digital graffiti sys-
tems [5, 6]. However, fulfilling these promises requires over-
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coming a number of tough challenges. Our research concen-
trates on one of these problems, the acquisition and use of
personal gazetteers.

A personal gazetteer records places that are meaningful
for a specific person. While different applications may re-
quire different information about places, for us the essential
requirements are a textual label and some sort of geomet-
ric representation, e.g., a point, a set of points, or a region.
Thus, my personal gazetteer might include places such as:

e FEspresso Ezxpose - latitude: 44°5702’, longitude:

93°1548’.
e Home - lattitude: 445698’, longitude: 93°1527’.

We have argued elsewhere [11] for the advantages of per-
sonal gazetteers based on a notion of place, rather than
just physical location. For example, there may be a com-
plex relationship between what a person considers a place
and physical location: “Target” might refer to any one of a
chain of discount stores within a metropolitan area. Further,
the descriptions people use to refer to places — for example,
“the coffeeshop”, “Espresso Expose”, or “the off-brand cof-
fee place next to Big 10” — vary depending on who the de-
scriptions are produced for and the purpose for which they
are produced. More generally, research in environmental
psychology explores how people naturally structure their ex-
perience around personally and socially meaningful places -
home, office, school, church, coffeeshop, pub, etc. [8] [9] [12]

Once we commit to building systems around users’ per-
sonal places, we face a new problem: how is a system to
acquire personal gazetteers? This paper takes an interac-
tive discovery approach to this problem. Specifically, we
developed a clustering algorithm that discovers a user’s per-
sonal gazetteer from the user’s spatiotemporal histories, i.e.,
time-stamped location data. We then embed this algorithm
in an interactive system that lets users visualize and confirm,
modify, or reject the places discovered by the system.

The remainder of the paper is organized as follows. We
first review previous algorithms for discovering personal
places and identifies several shortcomings with the algo-
rithms. We then detail our clustering algorithm, including
an important temporal pre-processing step. Next, we de-
scribe our framework for evaluating personal gazetteer dis-
covery algorithms. We then presents the larger discovery
system in which the algorithm is embedded, illustrate how
it works on real data (time-stamped GPS readings collected
from a GPS-enabled mobile phone), and use the evaluation



framework to compare its performance to the widely used
K-Means clustering algorithm. After briefly describing our
new research, we close with a brief summary.

2. RELATED WORK

Various approaches could be used to acquire a person’s
places for use by a sysem. For example, a person could
write down a list of places, with or without using a map.
However, a list produced from memory might be inaccurate
and incomplete. Further, to make the places usable by an
application, the position of each place in an earth coordi-
nation system would have to be determined somehow and
entered.

An alternative is to take an assisted or interactive discov-
ery approach. Different researchers have explored different
variants of this approach.

2.1 An Exploratory Approach

The comMotion system [13] consists of a device that con-
stantly takes GPS readings. Periodically, the GPS signal is
“lost”. The loss of the signal is interpreted as a significant
cue, namely that a building has been entered. The system
maintains a history of readings, and when the signal has
been lost within a given radius on three different occasions
the agent infers that this location (building) is interesting.
When locations are discovered, users are prompted to pro-
vide a name; they can do this either immediately or else later
while viewing the location on a map. Of course, users also
may judge a discovered location to be uninteresting and tell
the system to ignore it. Once a location has been discovered
and accepted by a user, the user can associate a to-do list
with it — a prototypical example is associating a shopping
list with a supermarket.

Since the cue for identifying a location is the loss of the
GPS signal, only locations such as buildings can be found.
Some meaningful places (such as a park or sidewalk cafe)
may not cause any GPS signal loss, and thus cannot be dis-
covered. Conversely, in so-called “urban canyons” between
tall buildings, GPS signals are often weak and unreliable,
which could trigger false discoveries. Further, the use of a
fixed radius for delimiting places may be problematic: the
size (and shape) of places like a shopping mall, a coffee shop,
one’s home, and one’s place of work can vary widely.

2.2 K-Means Clustering Approaches

Ashbrook and Starner [4] used the well-known K-Means
clustering algorithm to learn a user’s significant locations
from location history data. K-Means is an effecient iterative
clustering algorithm. It minimizes an error term which is the
sum of squared distances of each point to its cluster center,
a mean vector. In formal notation, the error term to be

minimized is
E= i Z d(z,ms),

i=1zeC;

where m; is the center of cluster Cj, and d(z,m;) is the
Euclidean distance between a point z and m;.

The algorithm initially assigns all points to a predefined
number of clusters randomly. Then it iterates through each
point, finds the cluster center nearest that point, and assigns
the point to the cluster that the center belongs to. This
iteration is repeated until the error term is deemed small or
not decreasing much.

K-Means clustering has several drawbacks for detecting
a user’s places. First, it needs the number of clusters be-
fore clustering begins. This could be difficult for users since
in general they would not know how many places they fre-
quent. Second, all points are included in the final clustering
results, which makes the results quite sensitive to noise. A
single noisy or uninteresting location reading far from other
points can pull a cluster center toward it much more than
it should, because the squared-distance error term heavily
weights distant outliers. Third, the K-Means algorithm is
non-deterministic: the final clustering depends on the initial
random assignment of points to clusters.

2.3 Density-based Clustering Approaches

Density-based clustering uses the density of local neigh-
borhoods of points [7]. There are two parameters used to
define density: FEps, the radius of a circle, and MinPts,
the minimum number of points within that circle. Density-
based clustering also uses some notion of the connectivity of
that neighborhood, whose points eventually form a cluster.
Points that are not in any clusters by the end are deemed
noise. Each cluster has a considerably higher density of
points than areas outside of the cluster. An example of
density-based clustering is shown in Fig. 1.

Figure 1: A density-based approach forms a cluster
where point density is high.

Many of the limitations of the K-Means clustering ap-
proach can be overcome with a density-based clustering ap-
proach.

First, it can discover clusters of arbitrary shape. This is
a significant improvement over K-Means, which favors sym-
metric shaped clusters (circles and spheres). There is no
reason to believe a person’s places are circularly shaped.
For example, while a commuter’s location history points at
a gas station may form a somewhat round shape, a student’s
location history points on a university campus might easily
form an irregular shape.

Second, noise, outliers, or simply unusual points are less
likely to participate in the final clustering results. A user
may take a trip to the airport only once in two years; he
may travel to his boss’ house only once in a lifetime (once
more than he wanted!); or his GPS device may show a few
points far from any actual location he visited. Such points
are unusual, and perhaps should be ignored. Fittingly, they
may generate few enough points to be discarded because
they do not meet the density requirement of a density-based
algorithm. In K-Means, they are never ignored; these points
will pull cluster centers toward them.

Third, although density-based algorithms require density
parameters (e.g., Eps and MinPts) as input, these param-
eters are less likely to need to change within a particular



application. For example, to discover personal gazetteers
at the metropolitan level, Eps and MinPts can be pre-
determined and thus no input is required from the user.
The number of clusters in K-Means must be specified per
user.

Finally, the density-based algorithms we describe always
produce the same clustering given the same input. Anyone
who has tried clustering that is sensitive to initial conditions
can feel joy at the taming of a disturbing randomness.

In summary, advantages of a density-based algorithm over
K-Means are

1. Allows clusters of arbitrary shape.
2. Robustly ignores outliers, noise, and unusual points.

3. Easier to choose reasonable parameter values for a per-
sonal gazetteer application that do not depend on the
user.

4. Deterministic results.

2.4 DBSCAN and its limitations

DBSCAN is a representative density-based algorithm [7] [14].

One issue with it is that it is very sensitive to the param-
eters Eps and MinPts. For some Eps and MinPts, the
algorithm will generate a large number of points within its
density definition, each of which could be further used to
generate its own density-reachable points. In such cases, it
will use a lot of memory and slow down considerably.

Our experience with these performance problems led us
to develop a different density and join-based clustering algo-
rithm: DJ-Cluster. Where DBSCAN uses the connectivity
notion of a clique graph, DJ-Cluster instead uses the con-
cept of connected components. This helps DJ-Cluster avoid
the performance problems we mentioned.

3. DJ-CLUSTER

The basic idea of DJ-Cluster is as follows. For each point,
calculate its meighborhood: the neighborhood consists of
points within distance Eps, under the condition that there
are at least MinPts of them. If no such neighborhood is
found, the point is labeled noise; otherwise, the points are
created as a new cluster if no neighbor is in an existing clus-
ter, or joined with an existing cluster if any neighbhour is
in an existing cluster.

Definition (density-based neighborhood of a point) The
density-based neighborhood N of a point p, denoted by
N(p), is defined by

N(p) = {q € S|dist(p,q) < Eps}

where S is the set of all points, ¢ is any point in the sample,
Eps is the radius of a circle around p that which defines
the density, and MinPts is the minimum number of points
required in that circle.

Definition (density-joinable) N(p) is density-joinable to
N(q), denoted as J(N(p), N(q)), with respect to Eps and
MinPts, if there is a point o such that both N(p) and N(q)
contain o. A density-joinable relation is illustrated in Fig. 2.

Definition (DJ Cluster) The density and join-based cluster
C is defined as follows:

Vpe S,Vqe S, IN(p), N(q) such that 3J(N(p), N(q))

Figure 2: Clusters A and B are density-joinable be-
cause of the point o.

3.1 Temporal Data Pre-processing

As we tried out the algorithm on real user location data
(time-stamped latitude-longitude data obtained from a GPS
device), we saw that it found a number of clusters that were
not interesting; these included frequent traffic stops on local
roads and at pedestrian crossings on campus. These clusters
formed because, given a large enough sample of location
data, many points will obtained at such frequent stops.

Thus, to improve the performance of the algorithm, we
added some temporal pre-processing. Many data filtering
techniques could be used to eliminate uninteresting location
data. Here are two we used.

First, GPS receivers return not just latitude and longi-
tude, but also a speed, estimated by the distance traveled
between consecutive readings. We exploited this informa-
tion to eliminate GPS readings with speeds greater than 0.
This removes many GPS readings collected while driving,
which did not interest us. It is interesting to note that,
in practice, the algorithm still can discover walking or bik-
ing paths, which turn out to contain a significant number of
readings with speed 0. Since these represent locations where
someone frequently stops, such as a traffic light or stop sign
or a pleasant park bench, these actually are good candidates
to form the significant points of a path.

Second, we eliminated a GPS reading if it was within a
small distance of the previous reading. This reduces the
amount of data that needs to be processed by the algorithm,
therefore speeding it up. Another reason we eliminated these
almost-stationary GPS readings is that we had an intuition
that indoor places and outdoor places should be represented
by similar sets of points. In our trials, we set the mobile
phone to take a GPS reading every minute. When you stay
at an outdoor location for a long time, the system collects
many GPS readings. When you stay at an indoor location
for a long time, the system collects few readings, because
GPS generally cannot fix indoors. This might put the indoor
places at a disadvantage in the clustering process.

It might seem like the application of these two steps would
leave no points (!), but there are still plenty of readings left
to work with. First, GPS readings are noisy enough that
they can have speed 0 and still not be near each other. Sec-
ond, often the most important places to a person are those
that he or she revisits frequently, and each revisit increases
the chance that a new, sufficiently-different-to-be-retained
reading will be taken.

After describing the temporal pre-processing, we now can
state the complete algorithm.

Note that the algorithm has the following properties:



Algorithm 1 DJ-Cluster

: Perform all temporal data pre-processing.
Select an unprocessed point p from sample S.
if p is null then
Return
end if
Compute the density-based neighborhood N(p) of a
point p wrt Eps and MinPts.
if N(p) is null then
Label p as noise.
9: else if N(p) is density-joinable to at least one existing
cluster then
10:  Merge N(p) and all the density-joinable clusters.
11: else
12:  Create a new cluster C' based on N(p).
13: end if
14: Return to step 2.

1. Every point is in one cluster or is ignored as noise.

2. There is always at least one point in each cluster.

3. The algorithm partitions the input into non-hierarchical
clusters.

4. The clusters do not overlap.

3.2 Determinism of DJ-Cluster

We now present the proof that DJ-Cluster is determinis-
tic.

THEOREM 3.1. DJ-Cluster produces one unique cluster-
ing.

PROOF. Suppose R(p,q) is a relation that is true iff p
and ¢ are points in the same cluster. We show that R is an
equivalence relation. That is, it is reflexive, symmetric, and
transitive.

First, by inspection, R is reflexive (a point is in its own
cluster) and symmetric (if p is in ¢’s cluster, then ¢ is in p’s
cluster).

Suppose we are given R(p,q) and R(q,s). These points
must have been processed by the algorithm in some order.
Suppose the last point processed was p. We know ¢ is in p’s
neighborhood because R(p,q), and that ¢ and s are in the
same cluster because R(q,s). Thus, p will be merged into
the same cluster as ¢ and s, so R(p, s).

Suppose instead that the last point was q. Then both p
and s will be in ¢’s neighborhood, and the cluster or clusters
with p and s will all be merged, and again R(p,s).

Finally, if the last point processed was s, this case is just
like p. This proves that R is transitive.

Since R is reflexive, symmetric, and transitive, it is an
equivalence relation, which partitions a space uniquely (up
to equivalence classes). Thus, the DJ-Cluster clustering is
unique. [

3.3 Eps and MinPts

The combination of Eps and MinPts determines the den-
sity of the location neighbours and thus the size and shape
of the clusters. To discover smaller, ”skinnier” and a larger
number of clusters, one can decrease both parameters.

More pragmatically, the values of Eps and MinPts to DJ-
Clustering may be determined by specific applications. In an
application to discover personal places from GPS data, Eps
may be set to approximate the uncertainty in GPS readings,

e.g., to 20 meters. Suitable values for MinPts range from 3
to 10; higher values mean that clusters must be more dense
to form. In general, this will have the effect of increasing
the “precision” of the discovered places while decreasing the
“recall” (see discussion below). To consider another exam-
ple, in an application to discover infectious disease breakout
centers within a state, an appropriate value for Eps might be
one mile, and 5 might be an appropriate value for MinPts.

3.4 Computational Complexity

Due to our small GPS datasets, the current DJ-Clustering
is a main-memory implementation. We can analyze it in two
steps.

First, temporal pre-processing is O(n). Computing the
neighborhood of a point is O(n?) without a spatial index,
or O(nlogn) with an R-tree index.

In the second step, the major cost is the join computation
for each point’s neighborhood with existing clusters. This is
O(n?) without a spatial index, or O(nlogn) with an R-tree
index.

Thus overall, the complexity of the algorithm is O(nlogn)
with an R-tree index.

4. EVALUATION FRAMEWORK

Thus far, we have motivated the problem of discovering a
personal gazetteer and presented the DJ-Cluster algorithm
to address this problem. We further argued that DJ-Cluster
is better suited for the personal gazetteer discovery problem
than several alternatives. However, as yet, we have offered
no way to formalize this argument. In other words, we must
answer the question: how should personal gazetteer discovery
algorithms be evaluated?

We think that standard information retrieval methods and
metrics provide an appropriate starting point. Let’s review
briefly. To evaluate the performance of a retrieval engine,
a corpus of documents is first selected. A corpus might
consists of a large number of articles from the Wall Street
Journal, for example. Then a set of queries is produced: the
intention here is to model realistic information needs within
a domain. So, for example, a representative query might be:
What is the best way to ensure the safety of the U.S. beef
supply? In the next step, domain experts determine which
documents in the corpus are relevant to (or serve as answers
for) each query. These documents serve as the baseline or
“gold standard” for evaluating the results returned by any
given search engine.

Two major metrics are traditionally used, precision and
recall. Precision measures the proportion of results returned
by a search engine for a query that were in the “gold stan-
dard”. Recall measures the proportion of documents in the
“gold standard” for a query that were returned by a search
engine.

While we find this framework largely suitable, we must
revise it in several ways. First, since we are discovering per-
sonal places for individuals, each user of the system must
define his or her own baseline, i.e., the set of places they
find meaningful. Second, since there is no a priori corpus
of places, we must take into account that people may not
be able to think of all the places they care about when pro-
ducing their baseline. Thus, our metrics must include a
way to measure discovery of interesting places that were not
actually in the baseline set. Third, the input to the dis-
covery algorithm consists of time-stamped location data for



a person, e.g., latitude-longitude coordinates obtained from
a GPS device. To increase the likelihood that places that
matter to a person are represented in this dataset, it should
be collected over a period of time, e.g., several weeks.

We now are in a position to formalize our methods and
metrics for evaluating personal gazetteer discovery systems.

Baseline Discovered

Places Places
B D

Figure 3: Sets of Baseline and Algorithm-Discovered
Places

To evaluate a personal gazetteer discovery algo-
rithm:

1. Collect a personal location dataset.

2. Collect a person’s baseline places (call this set B). We
obtained baseline places through a combination of the
following two approaches:

(a) Unassisted: The person logs the places he or she
visits during the data collection period.

(b) Assisted: At the end of the data collection pe-
riod, the person’s raw location data is presented
on a map. The person uses the map as an aid to
remember more places.

3. Run the algorithm on the personal location dataset to
discover places in the person’s gazetteer (call this set
of places D).

4. Present the discovered places to the user on a map.
Ask the person to match their baseline places to the
discovered places, obtaining the following sets (figure 3
summarizes the various sets of places):

e BD: Baseline places that were discovered.

e BN: Baseline places that were not discovered.

e DI Discovered places that are interesting and sig-
nificant to the person.

e DN: Discovered places that are not interesting to
the person.

5. Compute the Precision, Recall, and SurpriseFactor
metrics, defined as follows:

|BD|
recall = ——
|B]
precision = @

1D
) |DI|
SurpriseFactor = ——
1D

Note that it makes sense to sum the precision and
SurpriseFactor scores for an algorithm. This derived
quantity represents how many of the discovered places
were “good”, that is, either were in the user’s baseline
or were judged interesting and significant.

5. APPLYING AND ILLUSTRATING OUR
APPROACH

To actually try out and evaluate the algorithms we have
described, we must embed them in a working system and
collect real data. We have constructed a suitable system,
which we describe here. We have only completed the collec-
tion and analysis of data for a few people, including the first
author of this paper, Zhou. Thus, we use Zhou’s data for il-
lustrative purposes here. We are in the process of analyzing
data from an experiment where we collected data from 25
people; we describe this briefly in the Future Work section.

In this section, we describe our experiences with data col-
lection and baseline place discovery for Zhou. We ran K-
Means and DJ-Cluster on Zhou’s location history data and
discovered his places. The results were evaluated using the
recall, precision and surprise factor metrics.

5.1 Personal Gazetteer Discovery System

GPS Satellite
User Location

History data
GPS Enabled J2ME (PostgreSQL
Mobile Phone PostGIS)

Lgation Tking Server Map aCIuster
(Web Server) Results Rendering

Server
iD (UMN Map Server)

Map and Cluster
Visualizarion
(Web Browser)

Nextel TeleCom Services
(IP, Data Transmission)

Figure 4: Components of a Personal Gazetteer Dis-
covery System

The personal gazetteer discovery system consists of three
major components: location sensing, location data storage,
and visualization. These are illustrated in figure 4. To
sense location data, we used a GPS-enabled phone (the Mo-
torola i88s) and Nextel’s phone service. To store location
data, we set the phone to use a free service, AccuTrack-
ing [1]. To visualize the maps, we used the University of
Minnesota MapServer [3], which supports Open GIS Consor-
tium (OGC) [2] standard spatial queries and operations. For
computation, we stored GPS data in a postgreSQL database
with PostGIS extensions.

5.2 Collecting a Personal Location Dataset

The first author of this paper carried a GPS-enabled mo-
bile phone for three weeks as he went about his daily ac-
tivities in the Minneapolis — Saint Paul metropolitan area
in the United States. His normal transportation mode was
driving a personal car. His routine included commuting to
work, frequent visits to the University of Minnesota campus,
and various errands.

He attempted to keep the phone with him and on at all
times. The phone ran the Accutracking service, which was
configured to take a GPS reading every minute. During
the 20-day experiment period, 3,469 GPS readings were col-
lected. On average, this was about 173 locations per day, or
nearly three hours worth of location data. These location
data are visualized on the map in figure 5.
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Figure 5: Zhou’s Personal Location Dataset

Visualization| EECS, Coffee Shop, Parking I, Parking
Only 11

Recording Cub, Tea House, Dentist, Pediatrician,
Only BestBuy, Tax Preparer, Bank, Grocery
Store, and University
Both Home, Work, Daycare, Community

Center, United Noodle

Table 1: Zhou’s Baseline Places

5.3 Collecting Baseline Places

The baseline places for Zhou are shown in table 1 and
(as black squares) in figure 6. Note that he logged most
of the places while his personal location dataset was being
collected, but added four more paces after looking at the
raw location data presented in figure 5.
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Figure 6: Zhou’s Baseline Places

5.4 Results

We ran both a standard K-Means algorithm (that we
implemented) and DJ-Cluster on Zhou'’s personal location
dataset. For DJ-Cluster, we set MinPts = 10 and Eps =
10. Figure 7 shows the baseline places and the results ob-
tained by K-Means; figure 8 shows the baseline places and
the results obtained by DJ-Cluster.

K-Means DJ-Cluster
Baseline(B) 18 18
Discovered 21 21
Places(D)
Baseline- 5 15
coverage(BD)
Not in base- |0 3
line but
interesting(DI)
Not in base- | 16 3
line and not
interesting(DN)
Recall 5/18 or 28% 15/18 or 83%
Precision 5/21 or 24% 15/21 or 71%
SurpriseFactor | 0/21 or 0% 3/21 or 14%

Table 2: Evaluation of K-Means and DJ-Cluster

For each algorithm, Zhou matched the baseline places
to the discovered places and then judged each non-baseline
place that was discovered as either interesting or not. This
enabled us to compute the evaluation metrics. Table 2
presents the results. Of course, these results — for just one
person’s data, with that person being an author of this pa-
per — do not prove that DJ-Cluster is superior to K-Means.
However, our previous analysis of the shortcomings of K-
Means makes us confident that DJ-Cluster’s superiority will
hold up in a more systematic evaluation. We next discuss
in more detail how each algorithm performed.

55 K-Means

Figure 7 shows that at a city scale, the places discovered
by K-Means are geographically close to the baseline places.
However, the zoom-ins in the figure reveal that many dis-
covered places are at least a couple of city blocks away from
the baseline places, and the mapping between baseline and
discovered places is quite inexact. For example, zoom-in B
contains four distinct baseline places in the campus area.
Yet the K-Means algorithm created only one cluster in that
area, and that cluster is 4-5 blocks away from the nearby
baseline places. Similarly, no clusters were created for other
baseline places such as Dentist, Cub Foods, and United Noo-
dle because there were relatively few location data for these
places, and they happened to be far away from the initial
randomly selected cluster centers.

On the other hand, zoom-in C shows that K-Means cre-
ated about 10 clusters for just one baseline place, Home.
This is because a large proportion (more than half) of all
the location data were near Home, so randomly selecting
points for the initial cluster centers led to many of these
points being selected.

5.6 DJ-Cluster

Compared to K-Means, DJ-Cluster shows discovered
places closer to each baseline place; in fact, they often ac-
tually overlap. See zoom-in B of figure 8 for example. DJ-
Cluster also discovered some interesting places that were not
in the person’s baseline places, such as Chipotle, WalMart,
and an ice arena. This offers some evidence for our claim
that an assisted approach to place acquisition offers advan-
tages over a purely user-driven one. Finally, DJ-Cluster
minimized the number of spurious places discovered around
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traffic lights and pedestrian stops.
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6. FUTURE WORK

In our first followup to this study, we seek to better un-
derstand how people conceptualize place and how their con-
cepts relate to physical locations, and to evaluate more sys-
tematically the accuracy of our DJ-Cluster algorithm. We
enlisted 25 subjects to carry GPS-enabled mobile phones
for a 3 week period. As in the exploratory study reported
here, location readings were taken every minute, and sub-
jects logged their places at the end of each day. After the
data collection phase was completed, we applied DJ-Cluster
to each subject’s personal location dataset to produce a map
for each subject. We then conducted a semi-structured in-
terview organized around each subject’s logged places and
the generated map. We evaluated the accuracy of the discov-
ered places and probed the physical structure of places. We
currently are in the process of analyzing the results, which

will provide a useful accuracy baseline for personal gazetteer
discovery algorithms.

We also are planning to do more complicated analysis of
location history datasets. For example, we intend to extend
our algorithm to discover travel routes, not just static places.
We also will explore social matching [15] algorithms, which
can bring together two different people based on overlap
in their spatiotemporal routines. This could be useful for
finding commuting partners, among other applications.

7. SUMMARY

We presented a deterministic clustering algorithm, DJ-
Cluster, intended to be used for discovering a user’s signif-
icant places from location data. Compare to previous algo-
rithms, DJ-Cluster has several important technical advan-
tages: it allows clusters of arbitrary shape; robustly ignores
outliers, noise, and unusual points; has more easily chosen
parameters; and has deterministic results. We also described
several temporal filtering techniques that reduce the number
of uninteresting places discovered by the algorithm.

Finally, we presented a framework for evaluating algo-
rithms that tackle the personal gazetteer discovery problem.
Using this framework, we presented results that suggest that
DJ-Cluster significantly outperforms standard algorithms.
Current work is firming up our understanding of the algo-
rithm’s accuracy, and planned work will extend it to handle
additional challenging and interesting problems.
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