
Generalized Suffix Trees for Biological Sequence Data:
Applications and Implementation

Paul Bieganski, John Ned1 and John V. Cadis
Computer Science Department, University of Minnesota

Ernest E Retzel
Medical School, University of Minnesota

This paper addresses applications of sujjix trees and
generalized suffix trees (GSTs) to biological sequence data
analysis. We define a basic set of suffix tree and GST oper-
ations needed to support sequence data analysis. While
those &finitions are straightforward, the construction and
manipulation of disk-based GST structures for large vol-
umes of sequence data requires intricate design. GST pro-
cessing is fast because the structure is content
addressable, supporting efJicient searches for all
sequences that contain particular subsequences. Instead
of laboriously searching sequences stored as arrays, we
search by walking down the tree. We present a new GST-
based sequence alignment algorithm, called GESTALT.
GESTALT f inds all exact matches in parallel, and uses
best-first search to extend them to produce alignments.
Our implementation experiences with applications using
GST structures for sequence analysis lead us to conclude
that GSTs are valuable tools for analyzing biological
sequence data.

1 Introduction
Genetic codings transmit information from a parent to

its progeny. The primary representation of information is
sequences of symbols from a limited alphabet. The most
commonly used alphabets represent the four nucleic acids
forming strands of DNA and the twenty amino acids con-
stituting polypeptides. The information encoding power of
these limited sets of molecules lies in their ability to form
long chains.

Sequence information is most commonly stored in
computer memory in contiguous locations, in order of the
molecules in the biological sequence. This storage method
is not efficient for a large group of sequence information
processing applications. The key problem lies in the fact
that data stored sequentially must be processed sequen-
tially. The information within the sequence is often
encoded through the presence of a certain subsequence of
molecules; for example a sequence of DNA coding for a
certain protein. In order to detect the presence of any given

1060-3425194 $3.00 0 1994 IEEE

subsequence the entire sequence must be accessed, and in
order to detect a subsequence in a set of sequences, each
sequence must be accessed sequentially. As the volume of
sequence data increases, the data access time itself
becomes the limiting factor of sequence information
retrieval regardless of advances in sequence comparison
speeds. What is needed is a system capable of content-
addressing of sequence. Such a system allows a sequence
to be accessed in terms of what it contains without having
to specify where it is contained.

In this, paper we describe the data structures and opera-
tions providing content-addressable access to sequence
data, outline their possible applications and report on our
work on their implementation. In section 2, we provide a
short review of suffix trees and generalized suffix trees. In
section 3, we review the operations that provide the basis
for construction of applications using suffix tree struc-
tures. In section 4 we outline a generalized suffix tree-
based sequence homology search algorithm. In section
5, we present an overview of sequence information pro-
cessing applications that can be constructed using the
basic operations described in section 3. In section 6 we
report on our experiences with implementations of some
of the applications. In section 7, we summarize and outline
future work.

2 Suffix trees
A trie is an indexing structure used for indexing sets of

key values of varying sizes[l3]. A trie is a tree in which
the branching at any level is determined by a partial key
value (see figure 1). A suffix tree is a PATRICIA trie [4]
built over the set of all suffixes of a given sequence S. Fig-
ure 2 illustrates a sample suffix tree of a short DNA
sequence. Each path from the root of the suffix tree repre-
sents a suffix of the original string. Any individual suffix
of the original sequence can be recreated by walking along
a path from the root and catenating the labels of the edges
traversed along the way. Nodes with a single outgoing
edge can be collapsed, resulting in edges with multi-

35 Proceedings of the Twenty-Seventh Annual Hawaii
International Conference on System Sciences, 1994

Authorized licensed use limited to: University of Minnesota. Downloaded on March 17, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

fl 0

0
FIGURE 1. A suffix tree for sequence ACTT

FIGURE 2. Suffix tree for sequence ACACTT.
Some edges have multi-symbol labels resulting
from collapsing nodes with single children.

f i
FIGURE 3. Suffix tree for sequence CT

symbol labels, such as the edge labeled AC coming out of
the root of the tree in figure 2.

A suffix tree for sequence S of length n can be con-
structed in O(n) time [8] and the number of nodes in the
tree is in general a linear function of n [30]. Heuristic
arguments [301 and our experiments with trees containing
the rodent subsection of GenBank indicate that the number
of nodes is equal to less than twice the number of bases in
the sequence for long DNA sequences.

A generalized suffix tree (GST) is an augmented ver-
sion of the suffix tree allowing for multiple sequences to
be stored in the same tree. A GST can be viewed as a suf-
fix tree with additional sequence-identifier leaves added to
the leaves of the original suffix tree. A generalized suffix
tree containing multiple sequences contains all suffixes of
each of the original sequences (see figures 2 , 2 and 4). For
every suffix, its sequence of origin is identified. A GST
can be augmented with information about the number of
different sequences that contain suffixes expressed by
descendants of each node (see figure 4). This number is
also known as the Color Set Count (CSC) [7]. A GST can

ACACTT A?

I
FIGURE 4. A generalized suffix tree for two
sequences, ACACTT and CT. Notice the
sequence identifier leaves (squares) denoting
the origin of every suffix of every sequence. The
number of identifier leaves for every sequence is
equal to the number of suffixes of that sequence
(equal to the number of characters in the
sequence).

be constructed in O(n) time [30], where n is the sum of
lengths of all sequences stored in the tree. Parallel algo-
rithms for GST construction will be described later.

3 Basic suffix tree operations
In this section we describe a set of basic operations on

generalized suffix trees. Molecular biology applications
are implemented by combining one or more of these oper-
ations.

In the remainder of the paper we use seq to denote a
single sequence and SEQS to denote a set of sequences.
In suffix trees with multi-letter edge labels, it is not suffi-
cient to give the node in order to describe a subsequence
because the subsequence may terminate within an edge.
For the sake of clarity we assume subsequences terminate
at nodes in the discussion.
3.1 Suffix tree construction [tree(seq)l

Suffix tree construction algorithms have been described
in the literature [8, 17, 231. They operate by constructing
an initial tree with a single branch corresponding to the
entire sequence and incrementally modifying the tree to
include all of its suffixes. An important variable in the con-
struction process is the choice of data structures used to
represent the tree. Fixed node-size trees have a node
access time advantage over child list-based ones since a
descendant can be accessed directly, without having to
traverse a list. They are particularly useful when the num-
ber of descendant pointers is small. For instance, each
node of a DNA sequence GST can have at most four chil-
dren, labelled A, C, G and T. Child list-based nodes are

36

Authorized licensed use limited to: University of Minnesota. Downloaded on March 17, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

more space efficient in applications when the number of
descendant nodes may be large, for example when repre-
senting amino acid sequences.
3.2 Generalized suffm tree construction
[gst(SEQS)i

The GST construction process is usually approached
17, 231 by adding a special sequence separator symbol to
the alphabet. The sequences to be included in the tree are
catenated, separated from each other by the separator sym-
bol. The GST is created using the ordinary suffix tree con-
struction algorithm on the catenated sequence. The GST
created using this process has to be kept in main memory
during construction, hence this approach is not feasible
when sets of thousands or more sequences are involved.
We have developed an incremental disk-based GST con-
struction method using binary merging of GSTs. Two
GSTs representing two disjoint sets of sequences are
merged to produce a single GST representing the union of
the two sets. A GST for a large set of sequences can be
constructed by performing a series of binary merges of
GSTs of increasing size, starting with n/2 merges of single
sequence trees and ending with a single merge of two trees
of n/2 sequences. All merges at each level of this binary
merge tree can be performed in parallel. Our merge proce-
dure operates in limited main memory on GSTs stored in
disk files, thus making it well-suited for execution on clus-
ters of workstations.
3 3 Suffix tree walking [match(tree(seq,),
seq2)1

Matching of a single sequence against a suffix tree is
the simplest variant of a family of tree-based matching
operations. A path expressing a given sequence seq2 is
traversed from the root of the suffix tree constructed for
sequence seq,. Traversal is terminated when the end of
seq2 is reached or a node in tree(seq,) is reached beyond
which further traversal is not possible. The point in the tree
at which the traversal is terminated determines the longest
prefix of seq, contained within the sequence seql .
3.4 GST walking [match(gst(SEQS), seq)]

A path expressing a given sequence seq is traversed
from the root of a GST constructed for a set of sequences
SEQS. Traversal is terminated when the end of seq is
reached or a node in gst(SEQS) is reached beyond which
further traversal is not possible. The point in the tree at
which the traversal is terminated determines the longest
prefix of seq contained within the set of sequences
SEQS. Examination of nodes descendant to the traversal
termination point can be used to determine where and in
what sequences of SEQS the fragments matching a prefix
of seq are located. The number of sequences of SEQS

matching the prefix of seq can be determined by examin-
ing the sequence count information in the nearest descen-
dant of the traversal termination point (see the description
of GST in section 2).
3.5 Suffix tree matching [match(tree(s), tree(p))l

Matching of suffix trees against suffix trees is per-
formed similarly to matching of sequences against suffix
trees. Instead of traversing a single path, however, all paths
corresponding to an exhaustive traversal of one tree are
traversed in the other tree. If the trees were truncated every
time the traversal process reaches a dead end in either tree.
the resulting tree would contain all common subsequences
of the two sequences. This tree can be examined to deter-
mine the lengths and locations for common subsequences.
To avoid truncating the trees, summary information about
the match can be collected during the traversal process.
For instance, the longest common subsequence can be
determined by keeping track of the longest match encoun-
tered during the traversal.
3.6 GST and suffix tree matching
[match(gst(SEQS), tree(seq))]

Matching of a suffix tree against a GST is performed
identically to the matching of two suffix trees. The
matches found between the two trees will indicate subse-
quences common between the sequence seq and any of
the subsequences contained in SEQS. Matches can be
analyzed in a manner described in section 3.4 to determine
their exact location and the members of SEQS involved.
3.7 GST addition [add(gst(SEQS,),
gst(SEQS2))I

GST addition allows GSTs for unions of disjoint sets of
sequences to be constructed by merging GSTs of the indi-
vidual sets. Addition of GSTs is performed by pre-order
traversal of both GSTs and merging of branches corre-
sponding to common subsequences. The GST merge oper-
ation is in its practical implementation less expensive
computationally than the construction of a new GST, even
though both operations are of the same order of complex-
ity. GST addition also has the advantage of supporting
disk-based representations of GSTs in limited main mem-
ory. We use GST addition in GST construction for very
large sequence sets.
3.8 GST subtraction [subtract(gst(SEQSl),
gst(S EQS2) 11

GST subtraction is the reverse of GST addition. A GST
corresponding to the difference of two sets of sequences
SEQSl and SECIS2 (SEQS2 contained in SEQS1) is
constructed by traversing both trees and inserting in the

31

Authorized licensed use limited to: University of Minnesota. Downloaded on March 17, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

result tree only nodes corresponding to sequences not
present in SEQS2.
3.9 Suffix tree and GST operation summary

Table 1 summarizes all operations described in this sec-
tion and their computational complexities. It also includes
brief comments on their potential for parallelization and
lists relevant references.

Operation
tree(seq)
gst(SEQS)

match(tree(seql), seq)

match(gst(SEQS), seq)

4 Generalized suffix tree alignment algorithm
In this section we outline a sequence similarity search

algorithm based on the content-addressability of sequence
data provided by generalized suffix trees.

Sequence alignment is a widely used method of
addressing sequence similarity 11, 9, 21, 321. An align-
ment of two sequences can be measured by defining an
alignment cost function [1, 3, 181. The cost function deter-

Time Space Parallel
complexity' complexity' implementation References

8,23, 17 O(n) O(n)
O(N) O(N) Parallel binary 8,23, 17,7

divide-and-con-
que+

O(n) O(1) 23, 7
OU) 23,7

mines the cost or penalty for mismatched, deleted and
inserted sequence elements in the alignment. An align-
ment with the minimal cost with respect to a given cost
function is the optimal alignment. Determination of opti-
mal and near-optimal alignments of sequences is an
important research tool, since sequences with low align-
ment costs have been shown to be frequently functionally
related.

An alignment of two sequences can be uniquely repre-
sented by a path in a two-dimensional lattice (see figure 5) .
The problem of optimal alignment determination becomes
the problem of finding the lowest-cost path in the lattice.

A number of dynamic programing-based optimal align-
ment algorithms have been developed and described in the
literature [l , 9, 10, 11, 15, 16, 18, 21, 25, 321. Most of
them function by enumerating alignments of prefixes of
the two sequences of increasing length. This corresponds

match(tree(seql), tree(seq,)

match(gst(SEQS), tree(seq2)

0"" 0"

0" 0"

add(gst(SEQS1), gst(SEQS2))

subtract(gst(SEQS,), gst(SEQS,))

Parallel multiple

branch traversal
O(N1+N2) O(N+N2)e Parallel multiple

* branch merging
O(Nl) 0(Ndh Parallel multiple

branch processing

a. Complexities of nested operations include the cost of the outermost operation only.
b. The last step of the binary merge limits the performance to O(N)
c. m is proportional to the number and length of common subsequences of seql and seq2 and m <= min(-
length(seql), length(seq2))
d. Additional processing of match information may increase cost
e. Can be performed in-place by modifying an existing GST

38

Authorized licensed use limited to: University of Minnesota. Downloaded on March 17, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

I

ATTCGG-
AT--GGC

A T T C G G S,

S,

S,

FIGURE 5. Graphical representation of a
sequence alignment as a path in a two-
dimensional graph. Diagonal edges correspond
to a match (or mismatch) of two characters
whereas horizontal and vertical segments
correspond to insertions (gaps) in the vertical
and horizontal sequences, respectively.

to enumerating all paths originating in the upper-left cor-
ner of Figure 5. The number of possible paths grows expo-
nentially with their length. To bound the number of paths
that must be considered, the dynamic programming algo-
rithms use cost functions with properties ensuring that,
whenever paths cross, only the lowest cost path must be
remembered. By repeatedly considering paths of increas-
ing lengths the algorithms eventually arrive at the lower-
right comer of the lattice in figure 5 in O(nm) operations,
which is the number of possible path crossings in the lat-
tice. Algorithms vary in details such as the form of the cost
functions supported and the way the information about the
path chosen at every crossing point is stored.

Improvements to the basic algorithm outlined above
have been suggested. One approach is to pre-compute path
segments corresponding to exact matches of subsequences
in order to restrict the areas of the lattice - and the num-
ber of potential path crossing points - that have to be
considered [6, 141.

Both the basic and improved versions of the alignment
algorithm process two sequences at a time. Two ways of
improving the search process for alignments of multiple
sequences are possible: processing multiple alignments
and multiple paths at the same time, and reducing the
number of paths considered by considering lowest cost
paths first. Both of these improvements could be achieved
if an algorithm were able to search all subsequences of all
sequences simultaneously. Such an algorithm would oper-
ate in the content domain (“what”), instead of the position
domain (“where”). A generalized suffix tree provides
exactly this ability and forms the basis of the Generalized
Suffix Tree Alignment (GESTALT) algorithm outlined
below.

The GESTALT algorithm determines alignments of a
given sequence seq against a set of sequences SEQS =
{Sl, ..., S,} by aligning a suffix tree and a generalized suf-

~-

FIGURE 6. Graphical representation of the
search space of a GST and suffix tree alignment
algorithm. The algorithm determines the
optimal alignments of sequence seq a ainst a

all
sequences S1...S, are shown as being of the
same length.

fix tree. By performing the match operation (match(gst(-
SEQS), tree(seq))) on the two trees the algorithm
determines all common subsequences of seq and any of
the members of SEQS. This is equivalent to diagonal path
segment precomputation for all pairs of sequences simul-
taneously. Figure 6 shows a graphical representation of the
problem of determining the best alignment of a single
sequence seq against a set of sequences SEQS. Path seg-
ments MI through M5 (figure 6) corresponding to all exact
matches against fragment f of sequence Seq are all discov-
ered by a single pair of matching tree branches’. Path seg-
ments such as these are likely to be parts of paths
corresponding to low cost alignments (figure 6).

In order to find the actual alignments the algorithm
extends the branches corresponding to exact matches one
sequence element at a time while allowing mismatches.
Every time a mismatch between the two branches in two
trees is considered a number of new potential paths (i.e.
pairs of branches) is created. The cost for every branch-
pair is recomputed according to some cost function. The
algorithm searches branch-pairs in a best-first [271 man-
ner, considering the lowest cost branch-pair first.

The algorithm as outlined above exhibits an undesirable
bias: paths having long exact matches as prefixes would be
traversed before a potentially lower cost path with a long
exact match suffix (compare alignment (B) versus align-
ment (A) in figure 7). This occurs because paths are
extended in one direction only. To search more fairly in
both directions the GESTALT algorithm operates on two
pairs of trees: a ‘forward’ pair and a ‘reverse’ pair. The

set of sequences S1 through S,. For carity P

1, To avoid overloading the term path we will use brunch
to refer to a path from the root to some point in the tree.

39

Authorized licensed use limited to: University of Minnesota. Downloaded on March 17, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

ACCCCGTTTTTA ACCCCGTTTTTA
I I I I I I ----- I @’ ACCCCGAAAAAA

!----I I I I I 1 - i
‘A’ AOOCGGTTTTTA

FIGURE 7. Alignments with low-cost suffixes (A)
and low-cost prefixes (B).

reverse pair is constructed by reversing each sequence in
SEQS and seq. The forward and reverse trees are aug-
mented with pointers to nodes corresponding to the
reverses of sequences expressed by every node in the other
tree (see figure 8). By traversing the forward and reverse
tree the algorithm considers extensions of the best path in
both directions. The forward and reverse tree pair can be
implemented as a single forward tree augmented with
additional pointers to nodes expressing the current node’s
sequence with single-character prefixes (see figure 8).

Following is a simplified pseudo-code outline of the
GESTALT algorithm:
/I find exact matches first
Alignmentset e- match(gst(SEQS), tree(seq))
do // process until satisfied

/I consider best alignment
alignment c- lowestCostAlignment(A1ignmentSet)
//extend it
newAlignments e- extendAlignment(a1ignment)
I/ add to the match set
Alignmentset e- Alignmentset - alignment + newAlign-

ments
I/ stop when satisfied
until terminationCriteria(A1ignmentSet) = TRUE

The extendAlignment procedure is responsible for
generating new alignment paths by extending the path cor-
responding to a given alignment. Path extension is per- -
Q -

FIGURE 8. A forwardheverse suffix tree pair for
the sequence ACAClT. Links corresponding to
four selected node pairs have been marked. Note
that in order to support the links between the
trees the trees do not have to be expanded to
one character per edge - compacted (see figure
2) trees with additional edge offset information
can be used.

formed by traversing appropriate pointers in the forward
reverse suffix tree pair (figure 8) or the augmented suffix
tree (figure 8). The terminationcriteria function is appli-
cation dependent. It may terminate the search process
when a specified number of complete alignments have
been completed, when a sub-alignment of a specified
length has been found, or when the cost of every alignment
under consideration has exceeded a specified maximum.

If one were to dynamically visualize the space of possi-
ble alignment paths depicted in figure 6 and highlight
paths as they are considered by the GESTALT algorithm
the image would resemble a dynamically changing
‘sponge’, initially filling the entire space (many short
exact matches), with gradually emerging diagonal seg-
ments (fewer, but longer exact matches), the ends of long
diagonal segments becoming ‘fuzzy’ (multiple mismatch-
ing paths being considered) and eventually connecting to
form complete alignment paths.

GESTALT simultaneously searches all of the target
sequences (SEQS) for subsequences of the pattern
sequence (seq). Because the search process takes place in
the content domain it has the ability to effectively use a
best-first search strategy to reduce the search space.

The GESTALT algorithm outlined above introduces a
number of interesting analytical and implementation
issues, some of which we will refer to in section 7.

5 Applications of suffix tree and generalized
suffix tree operations

By providing a content-addressable way of encoding
sequence information suffix trees form the basis of a fam-
ily of sequence analysis applications. In the following sec-
tion we outline a simple taxonomy of these applications.

FIGURE 9. A suffix tree for the sequence
ACACTT augmented with prefix pointers. Prefix
pointers point to nodes expressing the sequence
of the source node prefixed with the label of the
pointer: a pointer labeled ‘a’ originating at node
corresponding to sequence CAC points to a
node corresponding to sequence ACAC. Four
selected pointers are shown.

40

Authorized licensed use limited to: University of Minnesota. Downloaded on March 17, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

Suffix tree-based sequence analysis applications can be

1 Search applications,
2.Single sequence analysis applications, and
3 .Multiple sequence analysis applications.

divided into the following major categories:

5.1 Search applications
Suffix trees provide a good tool for performing

sequence searches. They can be applied to a number of
search applications with varying degrees of speed and
accuracy.

Exact match searches: exact searches provide the
basic dictionary and spelling-checker functions for a
sequence database. They support very fast (‘immediate’)
detection of the presence of a sequence in the database.
These capabilities are important during interactive work
such as computer-guided cloning experiment design or
primer design, where they can allow a system to display a
list of all matching sequences in real time, as the clone or
primer is being modified by the user. Exact match searches
are implemented using the match operation on a general-
ized suffix tree of the sequences in the database of interest
(SEQS) and the sequence in question (seq): ANSWER =
match(gst (SEQS) , seq)).

Subsequence composition searches: subsequence
composition searches are a variant of exact match searches
that detect exact matches of all subsequences of a given
sequence against any subsequences in the database. Their
main application is quick screening of sequences, either
for identification purposes or for filtering of data produced
by sequencing machines. The filtering process can
increase the quality of sequence data by detecting sample
contamination, eliminating vector sequences and bringing
‘unusual’ matches to the attention of researchers. Subse-
quence composition searches are implemented using the
tree matching operation: ANSWER = match(gst(-
SEQS), tree(seq)), where seq is the sequence in ques-
tion and SEQS the set of sequences in the database.

Homology searches: homology searches are per-
formed when sequences similar but not necessarily identi-
cal to a given sequence are to be found. The GESTALT
tree matching algorithm described in section 5 can be used
for homology searches. The cost function used by the
algorithm can be adjusted to detect only sequences within
a specified distance from the pattern sequence. We believe
that homology search applications based on this approach
may be able to outperform currently used tools such as
FASTP and FASTA [22]. We are currently developing a
GESTALT-based sequence search tool.

5.2 Single sequence analysis applications
Analysis of a suffix tree constructed for any given

sequence (tree(seq)) can reveal a wealth of interesting
information about the sequence, such as internal repeats,
shortest unique subsequence and longest common subse-
quence. Internal repeats in the sequence are represented by
internal (non-leaf) nodes in the tree. The shortest unique
subsequence is determined by finding the shortest tree
branch with a single descendant node. The longest com-
mon subsequence is determined by finding the longest tree
branch with more than one descendant node. tree(seq)
can also provide a measure of the information content of
the sequence [121.

A suffix tree of a single sequence allows all occur-
rences of any number of short subsequences to be easily
detected. This method can be used for enzyme cut site
determination: CutSites = match(gst(SEQS),
tree(seq)), where SEQS is the set of sequences corre-
sponding to enzyme cut sites.
5.3 Multiple sequence analysis applications

Constructing a single generalized suffix tree for a set of
sequences allows all of the sequences to be analyzed
simultaneously. A GST can be analyzed in a manner simi-
lar to a single-sequence suffix tree. The answers obtained,
however, relate to the entire set of sequences stored in a
given GST. Specifically, the presence of a given sequence
fragment in any of the sequences stored in a GST can be
determined using the match operation. Efficient detection
of common subsequences within a set of sequences forms
the basis for contig reassembly applications, among oth-
ers. Using basic tree operations, the process of contig reas-
sembly can be reduced to the following algorithm:
//construct the initial gst
T = gst(GELS)
// process until a single contig is produced
while memberCount(T) > 1 do

//pick best candidates for merging
c l , c2 = bestMergeCandidates(T)
//remove them from the tree
T = T - tree(c1) - tree(c2)
//add a merged sequence to the tree
T = T + gst(merge(c1, c2))

endwhile
The bestMergeCandidates function is an automatic

(using the match operation or the GESTALT algorithm) or
human-guided function responsible for selecting the best
candidates for merging. The merge function merges two
selected sequences into one. The rest of the loop body
maintains a generalized suffix tree of sequence contigs of
increasing lengths. Upon completion, the algorithm pro-
duces a generalized suffix tree containing a single contig.
This process provides natural support for merging of mul-

41

Authorized licensed use limited to: University of Minnesota. Downloaded on March 17, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

tiple sequence projects. Also, the high efficiency of the
process allows experimentation with various besthnerge-
Candidates and merge functions. We have implemented
a simple sequence reassembly engine similar to the one
outlined above using our basic tree operator package.

Another application for which generalized suffix trees
provide a useful framework is multiple sequence align-
ment. By analyzing a generalized suffix tree and choosing
the subsequences common to the largest number of
sequences’ as the initial anchor points, the search space of
the problem can be greatly reduced. We are currently
developing a multiple sequence alignment system using
the basic tree operator package.

6 Implementation issues
In this section, we outline three major issues in imple-

menting suffix tree based applications: implementation of
basic tree operations; construction, storage and manage-
ment of large persistent generalized suffix tree structures;
and actual applications. We also comment on our experi-
ences with such implementations.
6.1 Basic tree operation implementations

In the course of our experiments with suffix trees and
generalized suffix trees, we have developed several imple-
mentations of the basic set of tree operations described in
section 3. These applications range in stage of complete-
ness from alpha-test to production tools. We found that the
data structures and algorithms involved are complicated.
Thus, well-documented, defensive coding techniques are
essential for producing correct, robust implementations.

The initial tree operation package we have developed
supports suffix tree and generalized suffix tree creation
and disk-based storage of DNA sequences. It also includes
modules supporting compression of disk-based GSTs and
transparent access to both compressed and uncompressed
GST files. The package is written in C and runs on Sun

versions of the GST addition and subtraction operators.
The package supports symbol alphabets of arbitrary size.
6.2 Persistent generalized suffix tree maintenance
for large volumes of sequence data

Our early analysis and experiments with GSTs con-
vinced us that only space-efficient, disk-based storage of
GST structures will make their application feasible. We
have implemented a system for construction and disk-
based storage of GSTs for large (up to GenBank size) sets
of DNA sequences in structures we call H-trees (H stands
for huge). H-trees are stored in a fashion allowing binary
merging of disk-based H-trees in limited main memory, as
described in section 3.2. H-trees of append-only sequence
databases can be updated by merging the H-trees of new
sequences with the H-tree of the extant database.

In order to support large databases, we had to make the
system more space efficient. We have developed a com-
pression scheme satisfying two basic criteria: transparency
to existing tools, and support of fast, on-the-fly decom-
pression. The second requirement implies a local or node-
level compression scheme. We have implemented a system
satisfying these criteria and reduced the space requirement
of compressed H-trees from about 100 bytes per element
to 10-20 bytes per element (nucleotide or amino acid).
These compression levels make construction and mainte-
nance of GSTs for today’s large databases feasible

We have implemented the binary merge procedure on a
workstation cluster and used it to construct a single GST
for the rodent section of the GenBank database. The
rodent section of the GenBank version used contained
17,776,128 bases of DNA in 15,930 sequences. The result-
ing tree contained 26,854,572 nodes and occupied approx-
imately 400M bytes of disk space.

Support for persistent GST structures is being added to
the C++ GST object package. This package will also
incorporate the H-tree compression method.

SPARC workstations. 6.3 Tree operation-based applications
In order to facilitate experiments with other suffix tree

operations and symbol alphabets, we have implemented a
C++ GST object package. It supports the complete set of
tree operations described in section 3, including in-place

1. The number of sequences a given subsequence belongs
to is also equivalent to the Color Set Count (CSC) prob-
lem. In [7] an efficient (O(n)) solution to the CSC problem
using suffix trees is presented. When the merge-based
GST construction technique is used, however, the CSC
information is derived ‘free’ as a side effect of the con-
struction process.

~~

We have implemented two tools utilizing H-tree struc-
tures. hscan is a DNA sequence dictionary tool. It pro-
vides instant identification of a given DNA sequence
based on exact matching of sequences using the match
operation. hftscan is a more sophisticated search tool
matching a suffix tree of a given DNA pattern sequence
against an H-tree of the database and analyzing the exact
matches of subsequences detected by the match operation
in order to determine the set of sequences closest to the
pattern. The weighing of individual matches between the
two trees based on their length and relative ‘uniqueness’
can be adjusted.

The new C++ implementation of a GST object package
has provided us with an excellent platform for prototyping

42

Authorized licensed use limited to: University of Minnesota. Downloaded on March 17, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

and experimentation with new applications. We currently
have a simple prototype of a contig reassembly engine
operating on top of the C++ package. GST-based represen-
tation and manipulation of sequences during the contig
reassembly process has greatly simplified the process and
its implementation.

7 Future work
We believe that feasible, efficient implementations of

GST structures for large volumes of sequence data will
provide the basis for a variety of new research tools and
produce exciting results. Three major areas of future
research effort can be identified.

First, the implementation techniques of GST-based data
structures have to be perfected. This includes further
advances in compression and manipulation of secondary
storage-based structures. Issues of integrating these struc-
tures with existing and future sequence databases will have
to be considered, possibly leading to a development of a
GST server or layer operating on top of sequence data-
bases. Suffix trees cannot be maintained on a per-tool
basis because of the volume of the raw data and resulting
computational costs of creating, manipulating and main-
taining these data structures. They have to be treated as
separate data repositories, similar to other databases, or as
specialized server layers linked to databases and providing
the services needed by the various tools.

Second, GST-based structures and algorithms such as
GESTALT provide the basis for a family of new, high per-
formance sequence search tools. The unstructured nature
of searches performed by such tools appears to make them
good candidates for studying dynamic load balancing
issues in their parallel implementations.

Finally, the high levels of performance of GST-based
tools may allow some machine reasoning techniques to be
effectively applied to sequence analysis. In addition, new
applications of position-independent sequence data pro-
cessing may arise. An interesting example of such an
application is 3-D protein structure analysis. In [26], it has
been shown that 3-D protein structures can be represented
as symbols of a limited size alphabet. By translating pro-
tein structures into this representation, it is possible to use
suffix tree-based analysis techniques. Specifically, it may
be possible to perform 3-D protein structure searches and
alignments’ using the GESTALT algorithm.

1. Alignment of actual 3-D protein structures has been in
the past performed using dynamic programming tech-
niques [34].

8 Bibliography
[l] Altschul, Stephen E and Erickson, Bruce W., Opti-
mal Sequence Alignment Using Aflne Gap Costs, Bulletin
of mathematical biology, Vol. 48, No. 516, pp. 603-616,
1986.
[2] Altschul, Stephen E and Erickson, Bruce W., A Non-
linear Measure Of Subalignrnent Similarity And Its Sign$-
icance Levels, Bulletin of mathematical biology, Vol. 48,

[3] Altschul, Stephen E and Erickson, Bruce W., Locally
Optimal Subalignments Using Nonlinear Similarity Func-
tions, Bulletin of mathematical biology, Vol. 48, No. 516,

[4] Bays, J. C., The Complete PATRICIA, Ph.D. disser-
tation, University of Oklahoma, 1974.
[5] Chan, S.C., Wong, A. K. C. and Chiu, D. K. Y., A
Survey of Multiple Sequence Comparison Methods, Bulle-
tin of Mathematical Biology, Vol. 54, No. 4, pp. 563-598.
1992.
[6] Chao, Kun-Mao, Hardison, Ross C. and Miller,
Webb, Constrained Sequence Alignment, Bulletin of
Mathematical Biology, Vol. 55, No. 3, pp. 503-524, 1993.
[7] Chi Kwong Lui, Lucas, Color Set Size Problem with
Applications to String Matching, Proceedings of the Third
Annual Symposium on Combinatorial Pattern Matching.
Tucson, Arizona, USA, AprilMay 1992.
[8] McCreight, E. M., A Space Economical Sufi Tree
Construction Algorithm, JACM, 23,262-272, 1976.
[9] Davison, Dan, Sequence Similarity (‘Homology’)
Searching For Molecular Biologists, Bulletin of Mathe-
matical Biology, Vol. 47, No. 4, pp. 437-474, 1985.
[lo] Gotoh, Osamu, Consistency of Optimal Sequence
Alignments, Bulletin for Mathematical Biology, Vol. 52,

[1 1] Gotoh, Osamu, Optimal Sequence Alignment Allow-
ing for Long Gaps, Bulletin of Mathematical Biology, Vol.

[121 Grassberger, Peter, Estimating the Information Con-
tent of Symbol Sequences and EfJicient Codes, LEEE
Transactions on Information Theory, Vol. 35, No. 3 , May
1989
[13] Horowitz, Ellis and Sahni, Sartaj, Fundamentals of
Data Structures, Computer Science Press, 1987.
1141 Landau, Gad M. and Vishkin, Uzi, Fast Parallel and
Serial Approximate String Matching, Journal of Algo-
rithms, 10, pp.157-169, 1989.
[15] Landau, Gad M., Vishkin, Uzi and Nussinov, Ruth,
Locating alignments with k differences for nucleotide and
amino acid sequences, CABIOS, Vol. 4, No. 1, 1988, pp.

NO. 516, pp. 617-632, 1986.

pp. 633-660, 1986.

NO. 3, pp. 509-525, 1990.

52, NO. 3, pp. 359-373, 1990.

19-24.

43

Authorized licensed use limited to: University of Minnesota. Downloaded on March 17, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

[16] Lawrence, Charles B., Goldman, Daniel A. and
Hood, Robert T., Optimized Homology Searches of the
Gene and Protein Sequence Data Banks, Bulletin of Math-
ematical Biology, Vol. 48, No. 516, pp. 569-583, 1986.
[17] Martinez, H. M., An EfJicient Method for Finding
Repeats in Molecular Sequences, Nucleic Acids Research,

[181 Miller, Webb and Myers, Eugene, Sequence Com-
parisons With Concave Weighing Functions, Bulletin of
Mathematical Biology, Vol. 50, No. 2, pp. 97-120, 1988.
[191 Mott, Richard, Maximum-Likelihood Estimation of
the Statistical Distribution of Smith- Waterman Local
Sequence Similarity Scores, Bulletin of Mathematical
Biology, Vol. 54, No. 1, pp. 59-75, 1992.
[20] National Center for Biotechnology Information,
Genetic Sequence Data Bank, Release 76.0, 15 April
1993.
[21] Needleman, Saul B. and Wunsch, Christian D., A
General method Applicable to the Search for Similarities
in the Amino Acid Sequence of Two Proteins, Journal of
Molecular Biology, 48, pp. 443-453, 1970.
[22] Pearson, W.R. Rapid and Sensitive Sequence Com-
parison with FASTP and FASTA, Methods in Enzymology,

[23] Powell, Patrick A., Using and Constructing the SufJix
Tree Index Structure, U. of Minnesota Computer Science
Department, Technical Report TR 89-90
[24] Powell, P.A., P. Bieganski, E. Shoop [1989]. X I 1 -
Based Tools for Network Access to and Comparison of
DNA Sequence Data. Presentation at MacroMolecules,
Genes and Computers, Chapter Two, Waterville Valley,
New Hampshire.
[25] P.A. Powell [19901. FASTSIM: A New Algorithm for
Rapid Sequence Similarity Determination. Presentation at
American Medical Informatics Association First Annual
Research Conference: Computers, Molecular Biology and
Medicine. Snowbird, Utah.
[26] Prestrelski, S.J., Williams, A.L. Jr. and Liebman,
M.N., Generation of a substructure library for the descrip-
tion and classijication of protein seconday structure -
Overview of the methods and results, Proteins,
Dec;14(4):430-9, 1992
[27] Rich, Elaine, Artijicial Intelligence, McGraw-Hill
Book Company, 1983.
[281 P. Rice, Elliston, K. and Gribskov, M., in Sequence
Analysis Primer, M. Gribskov and J. Devereux, eds.,
Stockton Press, New York, NY, 1991
[29] Shasha, Dennis and Zhang, Kaizhong, Fast Algo-
rithms fo r the Unit Cost Editing Distance between Trees,
Journal of Algorithms, 1 1, pp. 58 1-62 1, 1990.

11, pp. 4629-4634, 1983.

V O ~ 183, pp. 63-98, 1990.

[30] Szpankowski, Wojciech. Probabilistic Analysis of
Generalized SuBx Trees, Combinatorial Pattern Matching,
Third Annual Symposium, Proceedings, Springer Verlag,

[31] Ukkonen, Esko, Finding Approximate Pattems in
Strings, Joumal ofAlgorithms, 6, pp. 132-137, 1985.
[321 Waterman, Michael S ., EfJicient Sequence Alignment
Algorithms, Journal of Theoretical Biology, 108, pp. 333-
337,1984.
[33] Waterman, M. S., Smith, T. F., and Beyer, W. A.,
Some Biological Sequence Metrics, Advances in Mathe-
matics, 20, pp. 367-387, 1976.
[34] Zuker, M. and Somorjai, K. L., The Alignment of
Protein Structures In Three Dimensions, Bulletin for
Mathematical Biology, Vol. 51, No. 1, pp. 55-78, 1989.

1992, 1-14.

44

Authorized licensed use limited to: University of Minnesota. Downloaded on March 17, 2009 at 15:56 from IEEE Xplore. Restrictions apply.

