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This paper addresses applications of sujjix trees and 
generalized suffix trees (GSTs) to biological sequence data 
analysis. We define a basic set of suffix tree and GST oper- 
ations needed to support sequence data analysis. While 
those &finitions are straightforward, the construction and 
manipulation of disk-based GST structures for large vol- 
umes of sequence data requires intricate design. GST pro- 
cessing is fast because the structure is content 
addressable, supporting efJicient searches for all 
sequences that contain particular subsequences. Instead 
of laboriously searching sequences stored as arrays, we 
search by walking down the tree. We present a new GST- 
based sequence alignment algorithm, called GESTALT. 
GESTALT f inds all exact matches in parallel, and uses 
best-first search to extend them to produce alignments. 
Our implementation experiences with applications using 
GST structures for sequence analysis lead us to conclude 
that GSTs are valuable tools for analyzing biological 
sequence data. 

1 Introduction 
Genetic codings transmit information from a parent to 

its progeny. The primary representation of information is 
sequences of symbols from a limited alphabet. The most 
commonly used alphabets represent the four nucleic acids 
forming strands of DNA and the twenty amino acids con- 
stituting polypeptides. The information encoding power of 
these limited sets of molecules lies in their ability to form 
long chains. 

Sequence information is most commonly stored in 
computer memory in contiguous locations, in order of the 
molecules in the biological sequence. This storage method 
is not efficient for a large group of sequence information 
processing applications. The key problem lies in the fact 
that data stored sequentially must be processed sequen- 
tially. The information within the sequence is often 
encoded through the presence of a certain subsequence of 
molecules; for example a sequence of DNA coding for a 
certain protein. In order to detect the presence of any given 
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subsequence the entire sequence must be accessed, and in 
order to detect a subsequence in a set of sequences, each 
sequence must be accessed sequentially. As the volume of 
sequence data increases, the data access time itself 
becomes the limiting factor of sequence information 
retrieval regardless of advances in sequence comparison 
speeds. What is needed is a system capable of content- 
addressing of sequence. Such a system allows a sequence 
to be accessed in terms of what it contains without having 
to specify where it is contained. 

In this, paper we describe the data structures and opera- 
tions providing content-addressable access to sequence 
data, outline their possible applications and report on our 
work on their implementation. In section 2, we provide a 
short review of suffix trees and generalized suffix trees. In 
section 3, we review the operations that provide the basis 
for construction of applications using suffix tree struc- 
tures. In section 4 we outline a generalized suffix tree- 
based sequence homology search algorithm. In section 
5, we present an overview of sequence information pro- 
cessing applications that can be constructed using the 
basic operations described in section 3.  In section 6 we 
report on our experiences with implementations of some 
of the applications. In section 7, we summarize and outline 
future work. 

2 Suffix trees 
A trie is an indexing structure used for indexing sets of 

key values of varying sizes[l3]. A trie is a tree in which 
the branching at any level is determined by a partial key 
value (see figure 1). A suffix tree is a PATRICIA trie [4] 
built over the set of all suffixes of a given sequence S. Fig- 
ure 2 illustrates a sample suffix tree of a short DNA 
sequence. Each path from the root of the suffix tree repre- 
sents a suffix of the original string. Any individual suffix 
of the original sequence can be recreated by walking along 
a path from the root and catenating the labels of the edges 
traversed along the way. Nodes with a single outgoing 
edge can be collapsed, resulting in edges with multi- 
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FIGURE 1. A suffix tree for sequence ACTT 

FIGURE 2. Suffix tree for sequence ACACTT. 
Some edges have multi-symbol labels resulting 
from collapsing nodes with single children. 

f i  
FIGURE 3. Suffix tree for sequence CT 

symbol labels, such as the edge labeled AC coming out of 
the root of the tree in figure 2. 

A suffix tree for sequence S of length n can be con- 
structed in O(n) time [8] and the number of nodes in the 
tree is in general a linear function of n [30]. Heuristic 
arguments [301 and our experiments with trees containing 
the rodent subsection of GenBank indicate that the number 
of nodes is equal to less than twice the number of bases in 
the sequence for long DNA sequences. 

A generalized suffix tree (GST) is an augmented ver- 
sion of the suffix tree allowing for multiple sequences to 
be stored in the same tree. A GST can be viewed as a suf- 
fix tree with additional sequence-identifier leaves added to 
the leaves of the original suffix tree. A generalized suffix 
tree containing multiple sequences contains all suffixes of 
each of the original sequences (see figures 2 , 2  and 4). For 
every suffix, its sequence of origin is identified. A GST 
can be augmented with information about the number of 
different sequences that contain suffixes expressed by 
descendants of each node (see figure 4). This number is 
also known as the Color Set Count (CSC) [7]. A GST can 

ACACTT A? 

I 
FIGURE 4. A generalized suffix tree for two 
sequences, ACACTT and CT. Notice the 
sequence identifier leaves (squares) denoting 
the origin of every suffix of every sequence. The 
number of identifier leaves for every sequence is 
equal to the number of suffixes of that sequence 
(equal to the number of characters in the 
sequence). 

be constructed in O(n) time [30], where n is the sum of 
lengths of all sequences stored in the tree. Parallel algo- 
rithms for GST construction will be described later. 

3 Basic suffix tree operations 
In this section we describe a set of basic operations on 

generalized suffix trees. Molecular biology applications 
are implemented by combining one or more of these oper- 
ations. 

In the remainder of the paper we use seq to denote a 
single sequence and SEQS to denote a set of sequences. 
In suffix trees with multi-letter edge labels, it is not suffi- 
cient to give the node in order to describe a subsequence 
because the subsequence may terminate within an edge. 
For the sake of clarity we assume subsequences terminate 
at nodes in the discussion. 
3.1 Suffix tree construction [tree(seq)l 

Suffix tree construction algorithms have been described 
in the literature [8, 17, 231. They operate by constructing 
an initial tree with a single branch corresponding to the 
entire sequence and incrementally modifying the tree to 
include all of its suffixes. An important variable in the con- 
struction process is the choice of data structures used to 
represent the tree. Fixed node-size trees have a node 
access time advantage over child list-based ones since a 
descendant can be accessed directly, without having to 
traverse a list. They are particularly useful when the num- 
ber of descendant pointers is small. For instance, each 
node of a DNA sequence GST can have at most four chil- 
dren, labelled A, C, G and T. Child list-based nodes are 
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more space efficient in applications when the number of 
descendant nodes may be large, for example when repre- 
senting amino acid sequences. 
3.2 Generalized suffm tree construction 
[gst(SEQS)i 

The GST construction process is usually approached 
17, 231 by adding a special sequence separator symbol to 
the alphabet. The sequences to be included in the tree are 
catenated, separated from each other by the separator sym- 
bol. The GST is created using the ordinary suffix tree con- 
struction algorithm on the catenated sequence. The GST 
created using this process has to be kept in main memory 
during construction, hence this approach is not feasible 
when sets of thousands or more sequences are involved. 
We have developed an incremental disk-based GST con- 
struction method using binary merging of GSTs. Two 
GSTs representing two disjoint sets of sequences are 
merged to produce a single GST representing the union of 
the two sets. A GST for a large set of sequences can be 
constructed by performing a series of binary merges of 
GSTs of increasing size, starting with n/2 merges of single 
sequence trees and ending with a single merge of two trees 
of n/2 sequences. All merges at each level of this binary 
merge tree can be performed in parallel. Our merge proce- 
dure operates in limited main memory on GSTs stored in 
disk files, thus making it well-suited for execution on clus- 
ters of workstations. 
3 3  Suffix tree walking [match(tree(seq,), 
seq2)1 

Matching of a single sequence against a suffix tree is 
the simplest variant of a family of tree-based matching 
operations. A path expressing a given sequence seq2 is 
traversed from the root of the suffix tree constructed for 
sequence seq,. Traversal is terminated when the end of 
seq2 is reached or a node in tree(seq,) is reached beyond 
which further traversal is not possible. The point in the tree 
at which the traversal is terminated determines the longest 
prefix of seq, contained within the sequence seql . 
3.4 GST walking [match(gst(SEQS), seq)] 

A path expressing a given sequence seq is traversed 
from the root of a GST constructed for a set of sequences 
SEQS. Traversal is terminated when the end of seq is 
reached or a node in gst(SEQS) is reached beyond which 
further traversal is not possible. The point in the tree at 
which the traversal is terminated determines the longest 
prefix of seq contained within the set of sequences 
SEQS. Examination of nodes descendant to the traversal 
termination point can be used to determine where and in 
what sequences of SEQS the fragments matching a prefix 
of seq are located. The number of sequences of SEQS 

matching the prefix of seq can be determined by examin- 
ing the sequence count information in the nearest descen- 
dant of the traversal termination point (see the description 
of GST in section 2). 
3.5 Suffix tree matching [match(tree(s), tree(p))l 

Matching of suffix trees against suffix trees is per- 
formed similarly to matching of sequences against suffix 
trees. Instead of traversing a single path, however, all paths 
corresponding to an exhaustive traversal of one tree are 
traversed in the other tree. If the trees were truncated every 
time the traversal process reaches a dead end in either tree. 
the resulting tree would contain all common subsequences 
of the two sequences. This tree can be examined to deter- 
mine the lengths and locations for common subsequences. 
To avoid truncating the trees, summary information about 
the match can be collected during the traversal process. 
For instance, the longest common subsequence can be 
determined by keeping track of the longest match encoun- 
tered during the traversal. 
3.6 GST and suffix tree matching 
[match(gst(SEQS), tree(seq))] 

Matching of a suffix tree against a GST is performed 
identically to the matching of two suffix trees. The 
matches found between the two trees will indicate subse- 
quences common between the sequence seq and any of 
the subsequences contained in SEQS. Matches can be 
analyzed in a manner described in section 3.4 to determine 
their exact location and the members of SEQS involved. 
3.7 GST addition [add(gst(SEQS,), 
gst(SEQS2))I 

GST addition allows GSTs for unions of disjoint sets of 
sequences to be constructed by merging GSTs of the indi- 
vidual sets. Addition of GSTs is performed by pre-order 
traversal of both GSTs and merging of branches corre- 
sponding to common subsequences. The GST merge oper- 
ation is in its practical implementation less expensive 
computationally than the construction of a new GST, even 
though both operations are of the same order of complex- 
ity. GST addition also has the advantage of supporting 
disk-based representations of GSTs in limited main mem- 
ory. We use GST addition in GST construction for very 
large sequence sets. 
3.8 GST subtraction [subtract(gst(SEQSl), 
gst(S EQS2) 11 

GST subtraction is the reverse of GST addition. A GST 
corresponding to the difference of two sets of sequences 
SEQSl and SECIS2 (SEQS2 contained in SEQS1) is 
constructed by traversing both trees and inserting in the 

31 

Authorized licensed use limited to: University of Minnesota. Downloaded on March 17, 2009 at 15:56 from IEEE Xplore.  Restrictions apply. 



result tree only nodes corresponding to sequences not 
present in SEQS2. 
3.9 Suffix tree and GST operation summary 

Table 1 summarizes all operations described in this sec- 
tion and their computational complexities. It also includes 
brief comments on their potential for parallelization and 
lists relevant references. 

Operation 
tree(seq) 
gst(SEQS) 

match(tree(seql), seq) 

match(gst(SEQS), seq) 

4 Generalized suffix tree alignment algorithm 
In this section we outline a sequence similarity search 

algorithm based on the content-addressability of sequence 
data provided by generalized suffix trees. 

Sequence alignment is a widely used method of 
addressing sequence similarity 11, 9, 21, 321. An align- 
ment of two sequences can be measured by defining an 
alignment cost function [ 1, 3, 181. The cost function deter- 

Time Space Parallel 
complexity' complexity' implementation References 

8,23, 17 O(n) O(n) 
O(N) O(N) Parallel binary 8,23, 17,7 

divide-and-con- 
que+ 

O(n) O(1) 23, 7 
OU) 23,7 

mines the cost or penalty for mismatched, deleted and 
inserted sequence elements in the alignment. An align- 
ment with the minimal cost with respect to a given cost 
function is the optimal alignment. Determination of opti- 
mal and near-optimal alignments of sequences is an 
important research tool, since sequences with low align- 
ment costs have been shown to be frequently functionally 
related. 

An alignment of two sequences can be uniquely repre- 
sented by a path in a two-dimensional lattice (see figure 5 ) .  
The problem of optimal alignment determination becomes 
the problem of finding the lowest-cost path in the lattice. 

A number of dynamic programing-based optimal align- 
ment algorithms have been developed and described in the 
literature [ l ,  9, 10, 11, 15, 16, 18, 21, 25, 321. Most of 
them function by enumerating alignments of prefixes of 
the two sequences of increasing length. This corresponds 

match(tree(seql), tree(seq,) 

match(gst(SEQS), tree(seq2) 

0"" 0" 

0" 0" 

add(gst(SEQS1), gst(SEQS2)) 

subtract(gst(SEQS,), gst(SEQS,)) 

Parallel multiple 

branch traversal 
O(N1+N2) O(N+N2)e Parallel multiple 

* branch merging 
O(Nl) 0(Ndh Parallel multiple 

branch processing 

a. Complexities of nested operations include the cost of the outermost operation only. 
b. The last step of the binary merge limits the performance to O(N) 
c. m is proportional to the number and length of common subsequences of seql and seq2 and m <= min(- 
length(seql), length(seq2)) 
d. Additional processing of match information may increase cost 
e. Can be performed in-place by modifying an existing GST 
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FIGURE 5. Graphical representation of a 
sequence alignment as a path in a two- 
dimensional graph. Diagonal edges correspond 
to a match (or mismatch) of two characters 
whereas horizontal and vertical segments 
correspond to insertions (gaps) in the vertical 
and horizontal sequences, respectively. 

to enumerating all paths originating in the upper-left cor- 
ner of Figure 5. The number of possible paths grows expo- 
nentially with their length. To bound the number of paths 
that must be considered, the dynamic programming algo- 
rithms use cost functions with properties ensuring that, 
whenever paths cross, only the lowest cost path must be 
remembered. By repeatedly considering paths of increas- 
ing lengths the algorithms eventually arrive at the lower- 
right comer of the lattice in figure 5 in O(nm) operations, 
which is the number of possible path crossings in the lat- 
tice. Algorithms vary in details such as the form of the cost 
functions supported and the way the information about the 
path chosen at every crossing point is stored. 

Improvements to the basic algorithm outlined above 
have been suggested. One approach is to pre-compute path 
segments corresponding to exact matches of subsequences 
in order to restrict the areas of the lattice - and the num- 
ber of potential path crossing points - that have to be 
considered [6, 141. 

Both the basic and improved versions of the alignment 
algorithm process two sequences at a time. Two ways of 
improving the search process for alignments of multiple 
sequences are possible: processing multiple alignments 
and multiple paths at the same time, and reducing the 
number of paths considered by considering lowest cost 
paths first. Both of these improvements could be achieved 
if an algorithm were able to search all subsequences of all 
sequences simultaneously. Such an algorithm would oper- 
ate in the content domain (“what”), instead of the position 
domain (“where”). A generalized suffix tree provides 
exactly this ability and forms the basis of the Generalized 
Suffix Tree Alignment (GESTALT) algorithm outlined 
below. 

The GESTALT algorithm determines alignments of a 
given sequence seq against a set of sequences SEQS = 
{Sl, ..., S,} by aligning a suffix tree and a generalized suf- 

~- 

FIGURE 6. Graphical representation of the 
search space of a GST and suffix tree alignment 
algorithm. The algorithm determines the 
optimal alignments of sequence seq a ainst a 

all 
sequences S1...S, are shown as being of the 
same length. 

fix tree. By performing the match operation (match(gst(- 
SEQS), tree(seq))) on the two trees the algorithm 
determines all common subsequences of seq and any of 
the members of SEQS. This is equivalent to diagonal path 
segment precomputation for all pairs of sequences simul- 
taneously. Figure 6 shows a graphical representation of the 
problem of determining the best alignment of a single 
sequence seq against a set of sequences SEQS. Path seg- 
ments MI through M5 (figure 6) corresponding to all exact 
matches against fragment f of sequence Seq are all discov- 
ered by a single pair of matching tree branches’. Path seg- 
ments such as these are likely to be parts of paths 
corresponding to low cost alignments (figure 6). 

In order to find the actual alignments the algorithm 
extends the branches corresponding to exact matches one 
sequence element at a time while allowing mismatches. 
Every time a mismatch between the two branches in two 
trees is considered a number of new potential paths (i.e. 
pairs of branches) is created. The cost for every branch- 
pair is recomputed according to some cost function. The 
algorithm searches branch-pairs in a best-first [271 man- 
ner, considering the lowest cost branch-pair first. 

The algorithm as outlined above exhibits an undesirable 
bias: paths having long exact matches as prefixes would be 
traversed before a potentially lower cost path with a long 
exact match suffix (compare alignment (B) versus align- 
ment (A) in figure 7). This occurs because paths are 
extended in one direction only. To search more fairly in 
both directions the GESTALT algorithm operates on two 
pairs of trees: a ‘forward’ pair and a ‘reverse’ pair. The 

set of sequences S1 through S,. For carity P 

1, To avoid overloading the term path we will use brunch 
to refer to a path from the root to some point in the tree. 
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FIGURE 7. Alignments with low-cost suffixes (A) 
and low-cost prefixes (B). 

reverse pair is constructed by reversing each sequence in 
SEQS and seq. The forward and reverse trees are aug- 
mented with pointers to nodes corresponding to the 
reverses of sequences expressed by every node in the other 
tree (see figure 8). By traversing the forward and reverse 
tree the algorithm considers extensions of the best path in 
both directions. The forward and reverse tree pair can be 
implemented as a single forward tree augmented with 
additional pointers to nodes expressing the current node’s 
sequence with single-character prefixes (see figure 8). 

Following is a simplified pseudo-code outline of the 
GESTALT algorithm: 
/I find exact matches first 
Alignmentset e- match(gst(SEQS), tree(seq)) 
do // process until satisfied 

/I consider best alignment 
alignment c- lowestCostAlignment(A1ignmentSet) 
//extend it 
newAlignments e- extendAlignment(a1ignment) 
I/ add to the match set 
Alignmentset e- Alignmentset - alignment + newAlign- 

ments 
I/ stop when satisfied 
until terminationCriteria(A1ignmentSet) = TRUE 

The extendAlignment procedure is responsible for 
generating new alignment paths by extending the path cor- 
responding to a given alignment. Path extension is per- - 
Q - 

FIGURE 8. A forwardheverse suffix tree pair for 
the sequence ACAClT. Links corresponding to 
four selected node pairs have been marked. Note 
that in order to support the links between the 
trees the trees do not have to be expanded to 
one character per edge - compacted (see figure 
2) trees with additional edge offset information 
can be used. 

formed by traversing appropriate pointers in the forward 
reverse suffix tree pair (figure 8) or the augmented suffix 
tree (figure 8). The terminationcriteria function is appli- 
cation dependent. It may terminate the search process 
when a specified number of complete alignments have 
been completed, when a sub-alignment of a specified 
length has been found, or when the cost of every alignment 
under consideration has exceeded a specified maximum. 

If one were to dynamically visualize the space of possi- 
ble alignment paths depicted in figure 6 and highlight 
paths as they are considered by the GESTALT algorithm 
the image would resemble a dynamically changing 
‘sponge’, initially filling the entire space (many short 
exact matches), with gradually emerging diagonal seg- 
ments (fewer, but longer exact matches), the ends of long 
diagonal segments becoming ‘fuzzy’ (multiple mismatch- 
ing paths being considered) and eventually connecting to 
form complete alignment paths. 

GESTALT simultaneously searches all of the target 
sequences (SEQS) for subsequences of the pattern 
sequence (seq). Because the search process takes place in 
the content domain it has the ability to effectively use a 
best-first search strategy to reduce the search space. 

The GESTALT algorithm outlined above introduces a 
number of interesting analytical and implementation 
issues, some of which we will refer to in section 7. 

5 Applications of suffix tree and generalized 
suffix tree operations 

By providing a content-addressable way of encoding 
sequence information suffix trees form the basis of a fam- 
ily of sequence analysis applications. In the following sec- 
tion we outline a simple taxonomy of these applications. 

FIGURE 9. A suffix tree for the sequence 
ACACTT augmented with prefix pointers. Prefix 
pointers point to nodes expressing the sequence 
of the source node prefixed with the label of the 
pointer: a pointer labeled ‘a’ originating at node 
corresponding to sequence CAC points to a 
node corresponding to sequence ACAC. Four 
selected pointers are shown. 
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Suffix tree-based sequence analysis applications can be 

1 Search applications, 
2.Single sequence analysis applications, and 
3 .Multiple sequence analysis applications. 

divided into the following major categories: 

5.1 Search applications 
Suffix trees provide a good tool for performing 

sequence searches. They can be applied to a number of 
search applications with varying degrees of speed and 
accuracy. 

Exact match searches: exact searches provide the 
basic dictionary and spelling-checker functions for a 
sequence database. They support very fast (‘immediate’) 
detection of the presence of a sequence in the database. 
These capabilities are important during interactive work 
such as computer-guided cloning experiment design or 
primer design, where they can allow a system to display a 
list of all matching sequences in real time, as the clone or 
primer is being modified by the user. Exact match searches 
are implemented using the match operation on a general- 
ized suffix tree of the sequences in the database of interest 
(SEQS) and the sequence in question (seq): ANSWER = 
match(gst (SEQS) , seq)). 

Subsequence composition searches: subsequence 
composition searches are a variant of exact match searches 
that detect exact matches of all subsequences of a given 
sequence against any subsequences in the database. Their 
main application is quick screening of sequences, either 
for identification purposes or for filtering of data produced 
by sequencing machines. The filtering process can 
increase the quality of sequence data by detecting sample 
contamination, eliminating vector sequences and bringing 
‘unusual’ matches to the attention of researchers. Subse- 
quence composition searches are implemented using the 
tree matching operation: ANSWER = match(gst(- 
SEQS), tree(seq)), where seq is the sequence in ques- 
tion and SEQS the set of sequences in the database. 

Homology searches: homology searches are per- 
formed when sequences similar but not necessarily identi- 
cal to a given sequence are to be found. The GESTALT 
tree matching algorithm described in section 5 can be used 
for homology searches. The cost function used by the 
algorithm can be adjusted to detect only sequences within 
a specified distance from the pattern sequence. We believe 
that homology search applications based on this approach 
may be able to outperform currently used tools such as 
FASTP and FASTA [22]. We are currently developing a 
GESTALT-based sequence search tool. 

5.2 Single sequence analysis applications 
Analysis of a suffix tree constructed for any given 

sequence (tree(seq)) can reveal a wealth of interesting 
information about the sequence, such as internal repeats, 
shortest unique subsequence and longest common subse- 
quence. Internal repeats in the sequence are represented by 
internal (non-leaf) nodes in the tree. The shortest unique 
subsequence is determined by finding the shortest tree 
branch with a single descendant node. The longest com- 
mon subsequence is determined by finding the longest tree 
branch with more than one descendant node. tree(seq) 
can also provide a measure of the information content of 
the sequence [ 121. 

A suffix tree of a single sequence allows all occur- 
rences of any number of short subsequences to be easily 
detected. This method can be used for enzyme cut site 
determination: CutSites = match(gst(SEQS), 
tree(seq)), where SEQS is the set of sequences corre- 
sponding to enzyme cut sites. 
5.3 Multiple sequence analysis applications 

Constructing a single generalized suffix tree for a set of 
sequences allows all of the sequences to be analyzed 
simultaneously. A GST can be analyzed in a manner simi- 
lar to a single-sequence suffix tree. The answers obtained, 
however, relate to the entire set of sequences stored in a 
given GST. Specifically, the presence of a given sequence 
fragment in any of the sequences stored in a GST can be 
determined using the match operation. Efficient detection 
of common subsequences within a set of sequences forms 
the basis for contig reassembly applications, among oth- 
ers. Using basic tree operations, the process of contig reas- 
sembly can be reduced to the following algorithm: 
//construct the initial gst 
T = gst(GELS) 
// process until a single contig is produced 
while memberCount(T) > 1 do 

//pick best candidates for merging 
c l ,  c2 = bestMergeCandidates(T) 
//remove them from the tree 
T = T - tree(c1) - tree(c2) 
//add a merged sequence to the tree 
T = T + gst(merge(c1, c2)) 

endwhile 
The bestMergeCandidates function is an automatic 

(using the match operation or the GESTALT algorithm) or 
human-guided function responsible for selecting the best 
candidates for merging. The merge function merges two 
selected sequences into one. The rest of the loop body 
maintains a generalized suffix tree of sequence contigs of 
increasing lengths. Upon completion, the algorithm pro- 
duces a generalized suffix tree containing a single contig. 
This process provides natural support for merging of mul- 
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tiple sequence projects. Also, the high efficiency of the 
process allows experimentation with various besthnerge- 
Candidates and merge functions. We have implemented 
a simple sequence reassembly engine similar to the one 
outlined above using our basic tree operator package. 

Another application for which generalized suffix trees 
provide a useful framework is multiple sequence align- 
ment. By analyzing a generalized suffix tree and choosing 
the subsequences common to the largest number of 
sequences’ as the initial anchor points, the search space of 
the problem can be greatly reduced. We are currently 
developing a multiple sequence alignment system using 
the basic tree operator package. 

6 Implementation issues 
In this section, we outline three major issues in imple- 

menting suffix tree based applications: implementation of 
basic tree operations; construction, storage and manage- 
ment of large persistent generalized suffix tree structures; 
and actual applications. We also comment on our experi- 
ences with such implementations. 
6.1 Basic tree operation implementations 

In the course of our experiments with suffix trees and 
generalized suffix trees, we have developed several imple- 
mentations of the basic set of tree operations described in 
section 3. These applications range in stage of complete- 
ness from alpha-test to production tools. We found that the 
data structures and algorithms involved are complicated. 
Thus, well-documented, defensive coding techniques are 
essential for producing correct, robust implementations. 

The initial tree operation package we have developed 
supports suffix tree and generalized suffix tree creation 
and disk-based storage of DNA sequences. It also includes 
modules supporting compression of disk-based GSTs and 
transparent access to both compressed and uncompressed 
GST files. The package is written in C and runs on Sun 

versions of the GST addition and subtraction operators. 
The package supports symbol alphabets of arbitrary size. 
6.2 Persistent generalized suffix tree maintenance 
for large volumes of sequence data 

Our early analysis and experiments with GSTs con- 
vinced us that only space-efficient, disk-based storage of 
GST structures will make their application feasible. We 
have implemented a system for construction and disk- 
based storage of GSTs for large (up to GenBank size) sets 
of DNA sequences in structures we call H-trees (H stands 
for huge). H-trees are stored in a fashion allowing binary 
merging of disk-based H-trees in limited main memory, as 
described in section 3.2. H-trees of append-only sequence 
databases can be updated by merging the H-trees of new 
sequences with the H-tree of the extant database. 

In order to support large databases, we had to make the 
system more space efficient. We have developed a com- 
pression scheme satisfying two basic criteria: transparency 
to existing tools, and support of fast, on-the-fly decom- 
pression. The second requirement implies a local or node- 
level compression scheme. We have implemented a system 
satisfying these criteria and reduced the space requirement 
of compressed H-trees from about 100 bytes per element 
to 10-20 bytes per element (nucleotide or amino acid). 
These compression levels make construction and mainte- 
nance of GSTs for today’s large databases feasible 

We have implemented the binary merge procedure on a 
workstation cluster and used it to construct a single GST 
for the rodent section of the GenBank database. The 
rodent section of the GenBank version used contained 
17,776,128 bases of DNA in 15,930 sequences. The result- 
ing tree contained 26,854,572 nodes and occupied approx- 
imately 400M bytes of disk space. 

Support for persistent GST structures is being added to 
the C++ GST object package. This package will also 
incorporate the H-tree compression method. 

SPARC workstations. 6.3 Tree operation-based applications 
In order to facilitate experiments with other suffix tree 

operations and symbol alphabets, we have implemented a 
C++ GST object package. It supports the complete set of 
tree operations described in section 3, including in-place 

1. The number of sequences a given subsequence belongs 
to is also equivalent to the Color Set Count (CSC) prob- 
lem. In [7] an efficient (O(n)) solution to the CSC problem 
using suffix trees is presented. When the merge-based 
GST construction technique is used, however, the CSC 
information is derived ‘free’ as a side effect of the con- 
struction process. 

~~ 

We have implemented two tools utilizing H-tree struc- 
tures. hscan is a DNA sequence dictionary tool. It pro- 
vides instant identification of a given DNA sequence 
based on exact matching of sequences using the match 
operation. hftscan is a more sophisticated search tool 
matching a suffix tree of a given DNA pattern sequence 
against an H-tree of the database and analyzing the exact 
matches of subsequences detected by the match operation 
in order to determine the set of sequences closest to the 
pattern. The weighing of individual matches between the 
two trees based on their length and relative ‘uniqueness’ 
can be adjusted. 

The new C++ implementation of a GST object package 
has provided us with an excellent platform for prototyping 
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and experimentation with new applications. We currently 
have a simple prototype of a contig reassembly engine 
operating on top of the C++ package. GST-based represen- 
tation and manipulation of sequences during the contig 
reassembly process has greatly simplified the process and 
its implementation. 

7 Future work 
We believe that feasible, efficient implementations of 

GST structures for large volumes of sequence data will 
provide the basis for a variety of new research tools and 
produce exciting results. Three major areas of future 
research effort can be identified. 

First, the implementation techniques of GST-based data 
structures have to be perfected. This includes further 
advances in compression and manipulation of secondary 
storage-based structures. Issues of integrating these struc- 
tures with existing and future sequence databases will have 
to be considered, possibly leading to a development of a 
GST server or layer operating on top of sequence data- 
bases. Suffix trees cannot be maintained on a per-tool 
basis because of the volume of the raw data and resulting 
computational costs of creating, manipulating and main- 
taining these data structures. They have to be treated as 
separate data repositories, similar to other databases, or as 
specialized server layers linked to databases and providing 
the services needed by the various tools. 

Second, GST-based structures and algorithms such as 
GESTALT provide the basis for a family of new, high per- 
formance sequence search tools. The unstructured nature 
of searches performed by such tools appears to make them 
good candidates for studying dynamic load balancing 
issues in their parallel implementations. 

Finally, the high levels of performance of GST-based 
tools may allow some machine reasoning techniques to be 
effectively applied to sequence analysis. In addition, new 
applications of position-independent sequence data pro- 
cessing may arise. An interesting example of such an 
application is 3-D protein structure analysis. In [26], it has 
been shown that 3-D protein structures can be represented 
as symbols of a limited size alphabet. By translating pro- 
tein structures into this representation, it is possible to use 
suffix tree-based analysis techniques. Specifically, it may 
be possible to perform 3-D protein structure searches and 
alignments’ using the GESTALT algorithm. 

1. Alignment of actual 3-D protein structures has been in 
the past performed using dynamic programming tech- 
niques [34]. 
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