
Computing the Tag Genome

Jesse Vig
Department of Computer
Science and Engineering
University of Minnesota

jvig@cs.umn.edu

Shilad Sen
Math, Statistics, and
Computer Science

Department
Macalester College

ssen@macalester.edu

John Riedl
Department of Computer
Science and Engineering
University of Minnesota

riedl@cs.umn.edu

ABSTRACT
Tags help users understand a rich information space, by show-
ing them specific text annotations for each item in the space
and enabling them to search by these annotations. Often,
however, users may wish to move from one item to other
items that are similar overall, but that differ in key charac-
teristics. For example, a user who loves Pulp Fiction might
want to see a similar movie, but might be in a mood for a
less “dark” movie. In separate work we introduce Movie
Tuner, a novel interface that supports navigation from one
item to nearby items along dimensions represented by tags.
In the present paper we describe a data structure called the
tag genome that enables this form of navigation. The tag
genome encodes each item’s relationship to a common set
of tags by applying machine learning algorithms to user-
contributed content.

ACM Classification Keywords
H.5.3 Information Interfaces and Presentation: Group and
Organization Interfaces—Collaborative computing; H.5.2 In-
formation Interfaces and Presentation: User Interfaces

General Terms
Design, Experimentation, Human Factors

Author Keywords
example critiquing, tagging, recommender systems

1. INTRODUCTION
Tagging systems have become increasingly popular on the
Web. Users of tagging systems create free-form descriptors
of music, pictures or encyclopedia articles and use these de-
scriptors to navigate complex information spaces. In con-
trast to expert-designed ontologies, tags are based on the in-
terests of the user community, tags are applied by users free
of charge, and tags describe both factual and subjective as-
pects of items [5, 4].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Technical Report, September 10, 2010, Minneapolis, MN USA.

However, tags present challenges when used in navigation.
Tagging systems lack the hierarchical structure of expert-
designed taxonomies like the Dewey Decimal System [5].
Users searching for an item must specify a tag capturing
their query instead of drilling down through system-specified
alternatives. Studies have shown that some users find it dif-
ficult to think of tags [4].

We wish to enable a novel form of navigation that is based on
tags, but that offers a fundamentally different form of nav-
igation than traditional tagging systems. We motivate our
system with a hypothetical dialogue between a movie navi-
gation system and a user Marco:

Marco: I‘d like to watch a movie, but I’m not exactly sure
what I want.

System: How about When Harry Met Sally, Up, or Reser-
voir Dogs?

Marco: Reservoir Dogs looks like a possibility, please tell
me more.

System: It is a classic, non-linear, violent, crime, cult film.
Marco: I‘m not in the mood for something quite that vio-

lent.
System: Then how about The Usual Suspects? It’s like

Reservoir Dogs, but less violent.
Marco: I‘ll take it!

In separate work [6], we introduce Movie Tuner, a novel ap-
plication hat enables users to navigate an information space
much like Marco did. In the present paper, we show how we
compute the tag genome, the underlying data structure that
drives Movie Tuner. Informally, the tag genome describes a
set of items in terms of their relationship to a common set
of tags, in the same way that a biological genome describes
organisms based on a common set of genes. The tag genome
provides the data necessary to display the relevance of tags
to items, to compare items with respect to particular tags,
and to find items that are similar to a given item.

In this paper we show how to construct the tag genome by
applying machine learning algorithms to user-contributed con-
tent. We begin by formally defining the tag genome. We then
describe the data sets used to learn the tag genome, includ-
ing a gold standard of tag relevance values and a set of fea-
tures constructed from user-contributed content. Finally, we
present six regression models for computing the tag genome
and we evaluate these models against the gold standard.

1



2. THE TAG GENOME
Just as an organism is defined by a sequence of genes, an
item in an information space may be defined by its relation-
ship to a set of tags . If T is a set of tags and I is a set
of items, we quantify the relationship between each item
i ∈ I and tag t ∈ T by the relevance of t to i, denoted
as rel(i, t). rel(i, t) measures how strongly tag t applies to
item i on a continuous scale from 0 (does not apply at all) to
1 (applies very strongly). In the movie domain, for example,
rel(Reservoir Dogs, violent) = 0.98, rel(The Usual Suspects,
violent) = 0.65, and rel(A Cinderella Story, violent) = 0.03.

The tag genome for an item i is the vector of tag relevance
values across all tags in T , denoted as rel(i). Formally,

rel(i) =
〈
rel(i, t1), . . . , rel(i, tn)

〉
∀tk ∈ T

The tag genome has three key features that support the Movie
Tuner application. First, the tag genome provides a continu-
ous measure of tag relevance on a consistent 0-1 scale. Sec-
ond, the tag genome is dense, in that it defines a relevance
value for every tag t ∈ T , enabling comparisons between
items with respect to arbitrary tags. Third, the tag genome
may be used to measure similarity between items so the sys-
tem can find similar items when responding to critiques.

3. THE MOVIELENS PLATFORM
We used the MovieLens1 movie recommender as a platform
for computing the tag genome. The primary purpose of
MovieLens is movie recommendation: users rate movies on
a scale of 1 to 5 stars and receive recommendations in return.
MovieLens has been in continuous use since 1997. 186,000
users have provided a total of 17 million ratings. MovieLens
also supports tagging of movies; 5,375 users have applied
31,325 distinct tags, resulting in over 246,000 total tag ap-
plications.

4. TAG RELEVANCE PREDICTION
In this section we discuss how we construct the function
rel(i, t), which computes the relevance of tag t to item i (see
Section 2). We first describe how we collect a gold-standard
training set of tag relevance values. We then define features
that are used for predicting tag relevance, and discuss six re-
gression models that use these features as inputs. Finally, we
evaluate each regression model against the gold standard.

4.1 Training data set
In order to train our algorithm for predicting tag relevance,
we collected a gold-standard set of tag relevance values for
a subset of (item, tag) pairs. To collect this data, we con-
ducted a survey in which we asked MovieLens users to rate
the relevance of tags to movies. We included all tags applied
by at least 10 users, and we sampled from movies with at
least 100 ratings. In each round of the survey, subjects were
shown 8 pages, each displaying a single tag and 6 movies
they had rated. For each tag, subjects rated the relevance of
the 6 movies to the tag on a scale of 1 (does not apply at all)

1www.movielens.org

to 5 (applies very strongly). 676 users participated in the sur-
vey, providing relevance ratings for a total of 50,203 (item,
tag) pairs. We performed a linear transform on the relevance
ratings to put them on a 0-1 scale.

4.2 Features
We construct features from tagging data, item ratings, and
text reviews of items. Because the output variable rel(i, t) is
defined for an item-tag pair (i, t), each feature is also defined
for an item-tag pair (i, t).

Features based on tags. We constructed several features
from the tags that users have applied on MovieLens:

• tag-count: tag-count(i, t) is the number of times tag t
has been applied to item i.

• tag-applied: tag-applied(i, t) returns 1 if tag t has been
applied to item i, 0 otherwise.

• tag-lsi-sim: Because tags are applied sparsely, we wished
to take into account other tags besides t that have been ap-
plied to item i. For example, if t = scary, and scary itself
has not been applied to i, but frightening has been ap-
plied, scary is likely still relevant to i. A common method
for uncovering relationships between terms is to use latent
semantic indexing (LSI) [1]. To use LSI for tags, we con-
struct a document-term matrix with items as documents
and tags as terms, and we perform singular value decom-
position on this matrix. The result is a lower-dimensional
representation of each document (i.e. item) in the matrix.
We then express each tag as a single-term document and
transform it to the same lower-dimensional space as the
items. tag-lsi-sim(i, t) is the cosine similarity between
tag t and item i in this lower dimensional space.

Features based on ratings. We constructed two features
based on movie ratings on MovieLens:

• avg-rating: avg-rating(i, t) is the average rating for item
i. This feature does not depend on t.

• rating-sim: This feature measures the affinity between
tags and items based on rating patterns. Specifically,
rating-sim(i, t) equals the cosine similarity between the
vector of ratings for item i and the centroid of the rating
vectors of all items tagged with t (excluding i itself).

Features based on text reviews. We collected text reviews
by crawling user-contributed movie reviews on the Web. We
compute two features from this data:

• text-freq: text-freq(i, t) is the frequency that tag t ap-
pears in text reviews of item i. We removed stopwords
from t and stemmed t before performing this calculation.
We applied a log transform to the resulting value to make
the distribution more normal.

• text-lsi-sim: We use the same approach described above
for tag-lsi-sim, but use a document-term matrix based on
the frequency that tags appear in text reviews of items.

2



Meta-feature. We constructed one feature that is computed
from other features:

• prob-tag: prob-tag(i, t) is the estimated probability that
i should be tagged with t. To compute prob-tag(i, t), we
solve a classification problem specific to t where the out-
come variable is tag-applied(i, t), which equals 1 if tag t
has been applied to item i and 0 otherwise. The predictors
comprise all of the non-tag features above.
The positive training examples comprise all items that
have been tagged with t. We construct a set of negative
examples by randomly sampling 1000 items that have not
been tagged with t. We use a subset of 1000 non-tagged
items rather than all non-tagged items in order to make
the problem more tractable. We then weight these nega-
tive examples so that we effectively have the same number
of negative examples as positive examples.
Once we construct the training set of positive and nega-
tive examples, we run a logistic regression classifier using
all non-tag features: avg-rating(i, t), rating-sim(i, t),
text-freq(i, t), and text-lsi-sim(i, t). Because logistic re-
gression is a well-calibrated classifier, it produces a prob-
ability that the class is positive. prob-tag(i, t) denotes
this probability.

4.3 Regression model
We compared six regression models for predicting rel(i, t),
including 3 linear models and 3 generalized linear models
[2]. In the formulas below, X(i,t) denotes the feature vector
for item i and tag t, and comprises all feature values associ-
ated with the pair (i, t) as well as a constant term.

Linear models. In these models, rel(i, t) is modeled as a
linear function of feature vector X(i,t). We consider three
variations of the linear model:

• Single regression. We express the problem of tag rele-
vance prediction as a single regression:

rel(i, t) = X(i,t) · β

In the above expression, β denotes a vector of coefficients
that is of the same length asX(i,t). Note that β is constant
across all tags and items. The advantage of this approach
is that there is abundant training data to estimate the pa-
rameters, since all training data can be used for this single
regression problem.

• Separate regression per tag. In this model, the vector of
coefficient βt is specific to each tag:

rel(i, t) = X(i,t) · βt

This is equivalent to solving a separate regression prob-
lem for each tag. The advantage of this model is that it
captures behaviors specific to each tag. The disadvantage
is that one can only use training data collected for that
specific tag. Because there is less training data, the model
may overfit the data.

• Hierarchical regression by tag. In the hierarchical re-
gression model [2], the vector of coefficient βt is specific

Model MAE
linear, single regression 0.237
linear, separate regression per tag 0.253
linear, hierarchical by tag 0.220
generalized linear, single regression 0.234
generalized linear, separate regression per tag 0.224
generalized linear, hierarchical by tag 0.211

Table 1: MAE for each regression model based on 10-fold cross validation
against the gold standard dataset of tag relevance ratings provided by users
(transformed to 0-1 scale)

to each tag. Unlike the separate regression model, how-
ever, βt is modeled as a random variable that follows a
normal distribution N(µ, σ) across all tags:

rel(i, t) = X(i,t) · βt,

βt ∼ N(µ, σ)

This model has benefits of both the single regression and
the separate regression models. Since separate parameters
are learned for each tag, the model captures tag-specific
behaviors. However, because the parameters are modeled
to follow a prior distribution, there is less chance of over-
fitting the data.

Generalized linear models. The generalized linear models
are the same as the linear models, except for the addition of
the logit link function:

logit−1(x) =
ex

1 + ex

The advantage of generalized linear models is that they cap-
ture nonlinear relationships between rel(i, t) and feature val-
ues X(i,t).

• Single regression:

rel(i, t) = logit−1
(
X(i,t) · β

)
• Separate regression per tag:

rel(i, t) = logit−1
(
X(i,t) · βt

)
• Hierarchical regression by tag:

rel(i, t) = logit−1
(
X(i,t) · βt

)
,

βt ∼ N(µ, σ)

4.4 Evaluation
We evaluated each of these regression models using 10-fold
cross validation on the training set. We used the R program-
ming language to solve the regression equations [3]. The pri-
mary R functions we used were lm (linear regression), lmer
(linear, hierarchical), glm (generalized linear), and glmer
(generalized linear, hierarchical).

As shown in Table 1, the generalized linear models out-
performed the linear models, and the hierarchical models

3



outperformed the single regression and separate regression
models. The generalized linear, hierarchical model performed
best, achieving an MAE of 0.211.

5. ACKNOWLEDGMENTS
The authors thank the members of Grouplens for their feed-
back and assistance. This paper is funded in part by National
Science Foundation grants IIS 03-24851, IIS 05-34420, IIS
09-64695, and IIS 09-64697.

6. REFERENCES
1. S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.

Furnas, and R. A. Harshman. Indexing by latent
semantic analysis. Journal of the American Society of
Information Science, 41(6):391–407, 1990.

2. A. Gelman and J. Hill. Data analysis using regression
and multilevel hierarchical models. Cambridge
University Press, New York, 2007.

3. R Development Core Team. R: A Language and
Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2010. ISBN
3-900051-07-0.

4. S. Sen, S. K. Lam, A. M. Rashid, D. Cosley,
D. Frankowski, J. Osterhouse, F. M. Harper, and
J. Riedl. tagging, communities, vocabulary, evolution. In
CSCW ’06: Proceedings of the 2006 20th Anniversary
Conference on Computer Supported Cooperative Work,
pages 181–190, New York, NY, USA, 2006. ACM.

5. C. Shirky. Ontology is overrated.
http://www.shirky.com/writings/ontology overrated.html,
2005. Retrieved on May 26, 2007.

6. J. Vig, S. Sen, and J. Riedl. Navigating the tag genome.
In IUI ’11: Proceedings of the 15th International
Conference on Intelligent User Interfaces (to appear),
New York, NY, USA, 2011. ACM.

4


