
Developing a GUIDE Using Object-Oriented Programming+

Joseph A. Konstan and Lawrence A. Rowe

Computer Science Division
University of California

Berkeley, CA 94720
konstan@cs.berkeley.edu and larty@cs.berkeley.edu

ABSTRACT

PICASSO is a graphical user interface development en-
vironment built using the Common Lisp Object System
(CLOS). This paper describes how CLOS features in-
cluding multiple inheritance, instance methods, multi-
methods, and method combinations were used to imple-
ment the system. In addition, the benefits and draw-
backs of CLOS development are discussed including
code quality, maintainability and performance.

1. INTRODUCTION

This paper describes the object-oriented program-
ming techniques used to develop the PICASSO graphical
user interface development environment (GUIDE). The
PICASSO system is composed of approximately 40,000

lines of Common Lisp [1 l] using the Common Lisp Ob-
ject System (CLOS) [7] [111. Several programming
techniques from the PICASSO implementation that take

advantage of features in CLOS are presented. In addi-
tion, the benefits and drawbacks of using CLOS and
these techniques for developing a GUIDE are discussed.

PICASSO is composed of an interface toolkit, an ap-
plication framework, and a set of development tools.
The toolkit provides the resources to create graphical
user interfaces for the X window system [lo] using

+This research was supported by the National Science Foun-
dation (Grants DCR-8507256 and MIP-8715557), 3M
Corporation, and Siemens Corporation. Joseph Konstan was
also supported by a National Defense Science and Engineer-
ing Graduate Fellowship granted through DARPA.
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1991 ACM 89791-446-5/91/0010/0075...$1.50

Common Lisp. In addition to providing CLOS objects
for standard X resources (e.g., windows, fonts, colors,
graphics contexts, etc.), the system defines CLOS ob-
jects for toolkit widgets. Different types of widgets
(e.g., text, tables, pictures and drawings) are imple-
mented as classes in CLOS. A large library of pre-
defined widget types is provided including: radio
buttons, pop-up and pull-down menus, check boxes,
scrolling tables and text, and graphics [9]. In addition,
new widgets can be defined by PICASSO users and they
can then be used interchangeably with the predefined
ones.

The PICASSO application framework [8] provides
higher-level programming constructs for building appli-
cations. The framework provides abstractions forforms
(the electronic counterpart of paper forms), frames
(forms combined with pull-down menus to implement a
major mode of an application), dialog boxes (modal in-
teractors that are controlled with buttons) and panels
(nonmodal dialog boxes used to implement alternative
views of the data displayed through a frame). CLOS
objects are defined for these abstractions. These frame-
work objects are called PICASSO Objects (PO).

The application framework also defines a data model
for programming interfaces. PO’s are like procedures in
a conventional programming language. They may de-
fine local variables and constants, they are lexically
scoped, and they may be called and passed parameters.
Five types of parameter passing are supported to imple-
ment different types of sharing including value, refer-
ence and value-result. Due to the asynchronous nature
of user interfaces, PICASSO also supports value/update
parameters (the callee is updated if the caller’s variable
changes) and value/update-result parameters.

OOPSLA’91, pp. 75--88

75

Figure 1: CIMTOOL: A Tool for Managing IC-CIM Facilities

A constraint system is provided that allows the pro-
grammer to specify arbitrary constraints between vari-
ables and object slots, and the propagation system keeps
them up-to-date. For example, constraints are defined
between variables in a PO and widgets that display their
value to the user. This constraint system is similar to the
constraint systems in ThingLab [2] and in Garnet [5].
Lazy evaluation of formula-constrained data is also pro-
vided to enhance performance. For example, a button
that displays a certain rapidly-changing value when
pressed can use lazy evaluation to avoid processing val-
ues that are not displayed.

PICASSO has been used to develop applications in
semiconductor manufacturing and education. In addi-
tion to developing other applications, development con-
tinues on the system itself (e.g., a direct manipulation
application builder) and on integrating hypermedia ca-
pabilities into applications (e.g., animation, audio, and

full-motion video). A PICASSO application that dis-
plays and controls information about an integrated cir-
cuit manufacturing facility is shown in figure 1.

CLOS is an object-oriented programming system
built on top of Common Lisp. It provides classes and
methods found in most object systems along with a
number of features not provided in simpler object sys-
tems. For example, CLOS supports: 1) multiple inher-
itance of both attribute slots and methods, 2) instance
methods (i.e., methods specialized for a specific object),
3) multimethods (i.e., methods that discriminate on
more than one argument), and 4) method combinations
(i.e., factoring code into methods combined at run-
time). This paper describes how these features were
used to implement the PICASSO system.

The remainder of the paper is organized as follows.
The next three sections discuss the use of multiple in-
heritance, instance methods, and method combinations.

76

Section 5 discusses the benefits derived from and diffi-
culties encountered using CLOS. And, section 6 pre-
sents conclusions.

2. MULTIPLE INHERITANCE

This section describes several ways that multiple in-
heritance was used to simplify the PICASSO code. In
CLOS, classes may inherit slot deEnitions, including
slot attributes such as default values, and methods from
any number of superclasses. If more than one parent de-
fines a slot or method with the same name, an inherit-
ance order, called a class precedence list, is used to
determine the slot or method inherited. For a given
class, the class precedence list is determined by the or-
der in which the superclasses ate specified in the class
definition. This list is followed in a depth-first fashion,
but search is cut off by a common superclass. For exam-
ple, figure 2 shows a set of class detinitions employing
multiple inheritance and figure 3 shows the class inher-
itance graph for these definitions. An instance of class
F has three slots. slot-3 has a default value of 31, as
is specified in the definition of class F. slot-2 has a
default value of 21, not 2 0, because D precedes C in
class F’s class definition. slot-1 has a default value of
11, not 10, because F inherits from B before inheriting
from the common superclass A.

Thus, in this example, the complete class precedence
list for F is (F, D, C, B, A). In addition to using this or-
der to search for methods and slot deEnitions, CLOS
uses this list for call-next-method, the mechanism

(defclass A ()
((slot-l :initform 10)))

(defclass B (A)
((slot-l :initform 11)))

(defclass C (B)
((slot-2 :initform 20)))

(defclass D (A)
((slot-2 :initform 21)))

(defclass E (C D)
((slot-3 :initform 31)))

(defclass F (D C)
((slot-3 :initform 31)))

Figure 2: Class Definitions

Figure 3: Class Inheritance Graph

for invoking the same generic function in a superclass.
Multiple inheritance is used to improve code sharing

among classes and to localize code that might need to be
modified. Multiple inheritance was used in PICASSO to

implement factored behaviors and abstract classes.
We use the term factored behaviors to refer to

separating the different roles that objects play into dif-
fercnt superclasses. For example, output and input be-
haviors are separated into the classes gadget and
widget, respectively. A text gadget can display text but
cannot receive input. A blank button that can be
pressed, but displays nothing is a widget. Interface ob-
jects, which we generically refer to as widgets, inherit
from both classes. Most text fields can be edited and
therefore mix the behaviors of the display-only text gad-
get class with the editing behaviors of the text widget
class. And, most buttons mix display behavior (i.e., dis-
playing a text label or picture in the button) with input
behavior [i.e., detecting and responding to mouse button
presses). Titles and other decorative trim in a form can-
not be changed by the user so they can bc implcmentcd
by a gadget.

The first implementation of PICASSO did not factor
input and output behaviors into diffcrcnt classes. As a
result, it was difficult to improve the performance of
widgets that did not need all of the input behaviors as-
sociated with the class widget. Specifically, the pcrfor-

77

mance of text labels and of menus was unacceptably
slow. Factoring the behaviors allowed us to separate out
the more costly event-handling and input-oriented be-
haviors and to use lightweight text and picture gadgets
for higher performance.

Later, we introduced synthetic gadgets for very-high
performance areas where even a gadget was too ineffr-
cient. Synthetic gadgets are not CLOS objects. They are
display lists with the correct methods defined on them.
They are similar to glyphs in Inter-Views [3] and are
used in PICASSO for elements in tables and menus. This
iterative process of continual factoring for the sake of
performance has happened several times in the develop-
ment of PICASSO.

It is virtually impossible to implement cleanly fac-
tored behaviors without multiple inheritance. A single
inheritance system forces the programmer to specify de-
scendant behavior as a customization of a single parent.
PICASSO widgets, however, tend to inherit from at least
two superclasses, both of which define many slots and
methods. Figure 4 shows the class hierarchy for some
typical widgets. A text-widget, for example, inherits
behaviors from the text-gadget class that displays text
and from the widget class that incorporates all of the be-
haviors of X windows (e.g., event handling). In single-
inheritance systems, one of these behaviors would have
to be incorporated into text-widget in a different way.

Figure 4: Widget/Gadget Class Hierarchy

Factoring behaviors produces classes that can stand
alone (e.g., they can be instantiated) and combined to-
gether to mix their behaviors. However, sometimes
classes are created that will never be instantiated. They
define code used in other classes. We call these classes
abstract classes. Two reasons for using abstract classes
are to modularize code and create mixins.

Abstract classes helped modularize the code behind
the PICASSO application framework. Figure 5 shows
the class hierarchy for the PO classes. The classes pic-
asso-object, top-level-po, and callable-p0 are never in-
stantiated. Instead, picasso-object holds code common
to all PO’s (e.g., call and return semantics, lexical and
variable-holding behaviors, and grouping behaviors in-
herited from collection-widget). Top-level-po adds the
special behaviors needed by PO’s that are displayed di-
rectly on the root-window as opposed to being con-
tained inside other PO’s (i.e., tools, panels, and dialog
boxes). Callable-po adds the behaviors of PO’s that are
called like functions and coroutines (i.e., frames, panels,
and dialog boxes). By using abstract classes and multi-
ple inheritance, these behaviors are separated into dis-
tinct modules. Otherwise, code would either have to be
duplicated (by placing the common behaviors in each
picasso-object subclass) or moved into the superclass

Figure 5: PICASSO Object Class Hierarchy

78

picasso-object and then selectively enabled when
needed. Duplicating code causes maintenance prob-
lems and moving code into picasso-object hurts both
performance and code maintainability by making super-
class behaviors dependent on their subclasses.

Mixins are behaviors that can be added into any of a
number of other classes. They are “mixed in” by creat-
ing a new class that inherits from both the original or
base class and the mixin class. Mixins have two major
benefits in developing a GUIDE such as PICASSO.
First, they allow behaviors to be shared among classes
that are otherwise distantly spread across the class hier-
archy. Second, they allow easy prototyping in situations
where behaviors may or may not belong in certain
classes. As an example, the behavior of holding vari-
ables (and therefore being a lexical entity) in PICASSO
is defined by the mixin class variable-holder. It was
clear through most of the development of the frame-
work that PO’s should be variable holders, but it was not
clear whether any other entities should also be variable
holders. Specifically, collections which hold other wid-
gets for grouping behaviors and tables could arguably
benefit from holding variables. For development pur-
poses, variable holding behaviors could easily be mixed
into these classes to explore this option.

Designing mixin classes is trickier than designing
ordinary classes because an effective mixin should not
disturb the other operations of the class it is being mixed
into. A mixin must not conflict with the slots and meth-
ods that may be defined in any class except where nec-
essary for the operation of the mixin. In this case,
variable-holder required a single slot to hold the vari-
able table and a single accessor method for that table.
The rest of the class hierarchy was not permitted to use
that slot or method name.

Multiple inheritance greatly simplifies the develop-
ment and maintenance of a large system such as PIC-
ASSO. There are some cases, however, where multiple
inheritance is too cumbersome to use. The main disad-
vantage of mixins is the combinatorial explosion in the
number of classes that must be defined if all of the be-
haviors defined in the mixin classes can be combined
orthogonally. This large number of classes reduces the
maintainability of the code by requiring developers to
understand a great number of classes and to code all
mixins orthogonally to prevent conflicts in common de-
scendants. A large number of classes is also inefficient

since the creation of a class that may not be needed
wastes both processing time and memory. Some object
systems support dynamic classes which are instantiated
at run-time as needed. Dynamic classes remove the run-
time inefficiency of a large class space by allowing
classes to be specified as a list of superclasses. The next
section presents an alternative solution to this problem
mat uses instance methods.

3. Instance Methods

Instance methods discriminate on the value of an ar-
gument rather than the class of the argument. They de-
fine a behavior for a single instance of a class. Slot-
value methods define a behavior for all instances of a
class that have a specific value in a particular slot.
CLOS provides an eql method structure that can be used
to implement instance and slot-value methods.

Instance methods are used in PICASSO to implement
the propagation system that constrains slot values to be
equal to the result of specified functions of other slot
values.’ The Lisp form setf is used to set slot values
with the expression:2

(setf (slot-name object) new-value)

This form invokes a method named (setf slot-
name) that takes the new value and the object as argu-
ments and discriminates on the class of the object.
set f methods can be written just as any other methods.

A simple implementation of propagation can use the
set f method for all classes to check whether the
change requires a propagation to occur when any slot
value is set. This solution is inefficient, even with cach-
ing, since setting a slot value must be a fast operation
and relatively few slots have propagations that depend
on them. By using instance methods, the propagation
behavior is added only to the speciEc slots of objects
that need to propagate their changes. These are the slots
and objects referred to as arguments in the function used
to constrain another slot.

In this case, the preexisting setf method for an object
slot is augmented by defining an eql around method.

’ Propagation also constrains PICASSO variables, but since
variables are implemented as CLOS objects the same mcch-
anism can be used.

2 Technically, setf is a macro that expands into functions
and methods depending upon the target being set.

79

Around-methods, discussed in more detail in section 4, collection of routines that pack children within a collec-
wrap themselves around primary methods. They are in- tion when called. A geometry manager also has rou-
voked first, and the primary method is called under their tines that respond to asynchronous changes to the
control. After the primary method returns, control re- children in the collection (e.g., adding or removing a
turns to the around-method. In other words, the around- child), requests from children for different sizes, and
method specifies code to execute before and after the notifications that the collection itself is being resized.
primary method. For propagation, the following Approximately ten geometry managers are provided in
method is dynamically defined for any object slot that PICASSO (see figure 6) and new ones can be added by
must be propagated: defining the appropriate functions.

(defmethod (setf slot-name) :around
(value (self (eql objecr)))

(unless (equal (slot-value self ‘slo~-~~~me) value)
(call-next-method)
(propagate

(gethash unique-key ‘prop-table*))))

The argument list for this method indicates that it ap-
plies for any value, but only for the specific object des-
ignated. The body of the method checks first to assure
that the slot value indeed changed to cut off loops.
Then, the primary method is called to update the slot
value. Notice that this approach insures that any error
checking, side effects, or other processing will be done.
Once the primary method returns, the around-method
calls the propagate function to pass on the changes to
whatever slots have registcrcd interest in this slot value.

The obvious implementation defines an abstract
class for each geometry manager and mixes that class
into the base collection classes to yield a different class
for packed-collection-gadget, rubber-sheet-collec-
tion-gadget, etc. This approach leads to 30 or 40 new
classes and even more classes if subclasses of collec-
tions (e.g., form, table, etc.) may be defined with each
of these geometry managers. It also makes it more diff-
cult for a user-defined geometry manager to be fully in-
corporated into the system because the user must add
many new classes.

Custom set f methods are used for virtual slots and
PICASSO variables. Virtual slots are implemented as
methods to access and update a value without actually
storing the value. The set f method dots not check for
a change since no old value can exist. PICASSO vari-
ables, for efficiency, always propagate since most vari-
ables have propagations. This example illustrates
another benefit of instance methods: different variants
of the method can be defined to optimize cases that do
not deserve their own classes.

CLOS provides two solutions to this problem. One
solution is to create these classes dynamically as they
are needed. Classes can be dynamically created rather
easily with a metaclass protocol feature that allows a
class to be inserted into another class’ superclass list.
While this solution is a perfectly reasonable implemen-
tation, a different solution was used in PICASSO because
the metaclass solution results in less obvious code and
greater difficulties when changing a collection’s geom-
etry manager.

The PICASSO solution uses slot-value methods to

Name Function
Slot-value methods are also used to overcome the

problems of combinatorial class explosion introduced
by multiple inheritance. The different slot values define
a set of virtual classes each of which has the same slots
and class-discriminating methods but different slot-
value methods. The following two examples show how
virtual classes reduce the number of classes in the sys-
tem and make changing classes faster and easier.

Geometry management is the process of sizing and
laying out windows within a parent window. This pro-
cess is implemented in PICASSO by a geometry man-
ager that is bound to a collection. A geometry manager
includes a data structure that holds layout hints and a

anchor-gm

just-pack-gm

left-pack-gm

linear-gm

matrix-gm

menu-gm

null-gm

packed-gm

root-gm

rubber-gm

stacked-gm

controlled stretch and relative positioning

full-width menu bars

compressed (pushed left) menu bars

linear stretch (useful for bordered objects)

tabular layout

layout of menu entries

default, places objects where they request

perpendicular packing (useful for forms)

special manager for root window

rubber sheet (controlled stretching)

vertical and horizontal stacks for palettes

Figure 6: Geometry Managers Defined for PICASSO

call the appropriate geometry manager. Since each col-
lection has exactly one geometry manager, we include a
slot in the collection that holds the name of the geome-
try manager (i.e., a Lisp symbol). The methods that im-
plement a specific geometry manager discriminate on
the value stored in this slot, rather than on the class of
the object passed to them. For example, the method that
handles repacking a collection is defined as

(defmethod gc;;;pack ((gm (eql ‘my-gm)) self)

This method is called when the first argument is the
symbol my-gm. To make it easier to program this way,
we add a simple macro to handle passing in the slot-
value:

(defmacro repack (self)
‘(gm-repack (gm self) self))

Thus, we can call repack as if it were an ordinary
method, passing only the collection as an argument, and
it will call the correct repack method.

The other difficulty is to allocate storage for the ge-
ometry manager to use, since virtual classes are not real
classes so they cannot add slots. For geometry manag-
ers, the solution is straightforward. All geometry man-
gers are defined to use certain slots that are present in all
collections: 1) a children slot that holds a list of child
windows for which the geometry manager is responsi-
ble (in an order it manages) and 2) a gm-data slot that
holds other data including layout hints and cached re-
sults. The geometry manager routines are given com-
plete control of this gm-data structure, and they can
use it for any purpose.

A second use of slot-value methods in PICASSO is
for widget borders and labels. A border describes the
graphics that surround a widget to enhance its visual
appearance. Many borders are provided including drop-
shadows, picture frames, and boxes. A label contains
text or an image that identifies the widget. They can be
positioned in various locations including to the left,
above, or below the widget or in a smaller font in the
frame. Figure 7 shows some of the borders and labels
provided with PICASSO. LJsers can define additional
borders and labels by naming them and defining appro-
priate methods.

Labels and borders are implemented using the same
technique we used for geometry managers. Since the
data structures used by borders and labels are better de-
fined, they are given more detailed slot assignments in-

Figure 7: PICASSO Borders and Labels

eluding label-x,label-y,label-position,

label-value,border-type, and border-width.
When no border or label is desired, there is a small
space penalty for these extra slots but no method is ex-
ecuted so the time penalty is insignificant.

There are several benefits to using slot-value meth-
ods as an implementation of virtual classes. First, they
are easy to implement and extend. For example, a new
geometry manager, label, or border can be added by se-
lecting a name and defining a couple of methods. The
performance penalty when used is small (i.e., the cost of
accessing the slot-value before method discrimination)
and the performance penalty when not used is small
(i.e., the unused extra space). And, it is easy to change
the virtual class of an object by changing the value in the
appropriate slot.

With these benefits come some limitations as well.
The two biggest limitations are the inability to define
slots in virtual classes and the very limited inheritance
available. Since virtual classes are not classes, they can
only use the slots defined in the classes into which they
arc mixed. This limitation requires that all classes for a
given virtual class must use the same slots, which typi-
cally limits this technique to small features implement-
ing different versions of the same attribute.
Additionally, the inheritance available for virtual
classes is minimal. Since they are based on symbol
equality, there is a very strict two-level virtual class tree.
At the root is the class t that applies to everything and at
the leaves are all of the virtual classes? As a result, vir-
tual classes implemented this way do not work well
when there are large amounts of code to be shared
among some, but not all, of the variants.

4. Multimethods and Method Combinations

As we have seen, CLOS allows very powerful
method constructs that can discriminate on both class
membership and equality. This section describes how
PICASSO used CLOS multimethods and method combi-
nations.

PICASSO has tended to avoid using multimethods
due to performance considerations which are discussed
in the following section.4 Multimethods have been
used, however, to prototype behaviors that were later
implemented in other ways or in some cases abandoned.
Two examples are the development of type-sensitive
widgets and methods that handle different types of win-
dows.

A feature tested in an early version of PICASSO was
a type-sensitive widget. This type of widget would dis-
play only certain types of values (e.g., integers, strings,
or arrays). The widget would change itself into a differ-
ent widget if it was set to a value that it was unable to
display. In this way, a single widget could be created to
display a numerical value. If, for some reason, a picture
was assigned to that widget, it would automatically
change itself into a picture-widget.

Implementing this type of automatic class changing
was simplified by writing set f methods that discrimi-

3 Another possible implementation would create a class for
each geometry manager, label or border and place an in-
stance of that class in a slot in the collection or widget. This
implementation solves the slot and inheritance problems but
is no longer a lightweight implementation. Indeed, it merely
adds a list of components to an object, each of which has its
own methods, with methods on the holder that invoke meth-
ods on the proper component. We initially chose not to
employ this implementation but are now experimenting with
implementing geometry managers in this fashion. Should
this experiment prove successful, we hope to determine cri-
tcria for deciding when to use this technique and when to
use virtual classes.

4 In an earlier system we tried to use multimethods to imple-
ment event dispatching. A generic dispatch function was
defined that took an event and window object and discrimi-
nated on both. Besides learning that multimethods were not
implemented correctly in the early CLOS implcmcntation we
were using, we also quickly realized that method dctermina-
tion for multimethods was too slow for event dispatching.
More recent experiments discussed in section 5 show that
multimethod dispatching in a native CLOS implementation is
only slightly slower than ordinary dispatching. We expect to
make greater use of multimethods in the future.

nated on the type of the value as well as the type of the
widget. There would be a method to set meter-widgets
to integers and floating point numbers but not to strings.
The default method for widgets would then change the
class of the widget into one that could display the new
value. The performance of multimethods was not a
problem in this situation because this operation was ex-
ecuted infrequently and changing classes was already
slow. However, we abandoned this idea for a more llex-
ible synthetic gadget5

PICASSO still uses multimethods for a few cases
where operations depend on two different widgets or
gadgets. In some cases, there is a simple X server call
that can perform operations on two X windows (e.g.,
calculating relative coordinates or positions in the win-

dow hierarchy) but does not operate on non-X windows
(e.g., gadgets and synthetic gadgets). In these cases, a
method is defined that discriminates on the class of both
objects. If they are both X windows, the server call is
performed. Otherwise, toolkit code is executed to per-
form the operation.

Multimethods could be replaced in all cases with
code that resembles a case structure. Inclusion of mul-
timethods allows programmers to take advantage of the
built-in CLOS method dispatching, with its caching and
other performance tuning, rather than writing ad hoc,
and likely less performance tuned, custom dispatchers.

In CLOS each generic function has primary methods
as well as before-, after-, and around-methods. These
additional methods layer their execution on top of the
primary method. Suppose that we have two classes su-
per and sub and that a method foo has a primary, be-
fore-, after-, and around-method on each class. Figure

8 shows the method definitions for class sub. The defi-
nitions are the same for class super except that the for-
matted print statements read “SUPER” and the primary
method does not execute the call-next-method call.

When the method f oo is called on an instance of sub
the output shown in figure 9 is produced by the format
calls. In each case where (call-next-method) ap-

5A synthetic gadget contains only data and a list of dis-
play parameters. The method put is defined on each data
type to paint the data onto the screen. Where a text gadget is
an object with many slots representing all of the possible
functionality for text and windows, a text synthetic gadget
contains only a string, a location for painting, a font, and
some colors.

82

(defmethod foo ((self sub))
(format t “Entering SUB Primary Method”)
(call-next-method)
(format t “Exiting SUB Primary Method”))

(defmethod foo :before ((self sub))
(format t “SUB Before Method”))

(defmethod foo :after ((self sub))
(format t “SUB After Method”))

(defmethod foo :around ((self sub))
(format t “Entering SUB Around Method”)
(call-next-method)
(format t “Exiting SUB Around Method”))

Figure 8: Method Definitions for Class sub

pears, not executing that expression would result in
skipping forward to the corresponding “Exiting” clause
without executing any additional methods in between.
For example, if the f oo around method for sub did not
execute call-next-method, none of the other meth-
ods would be called.

Before-methods execute before any primary meth-
ods. Before a primary method is executed, all before-
methods that apply are executedfrom most tu least spe-
cific. Even if a superclass’ primary method is not exe-
cuted, its before-methods are always executed.
Therefore, before-methods should only be used when
any possible subclass will also need the same behavior.

In PICASSO, before-methods have a natural place in
implementing lazy evaluation slots. These slots are typ-

Entering SUB Around Method

Entering SUPER Around Method

SUB Before Method

SUPER Before Method

Entering SUB Primary Method

Entering SUPER Primary Method

Exiting SUPER Primary Method

Exiting SUB Primary Method

SUPER After Method

AUB After Method

Exiting SUPER Around Method

Exiting SUB Around Method

Figure 9: Call Sequence for Method Combinations

ically defined for a class, although they can also be de-
fined for an instance. Lazy evaluation slots check a
cache stored in the slot for validity when the slot is ac-
cessed. If the cached value is valid, it is returned. If not,
the cached value is recomputed. The cache is automat-
ically invalidated when appropriate. It is assumed that
there may be primary methods on the slot to properly
convert data or perform side effects. This lazy slot be-
havior is implemented with the following before-
method:

(defrn;pe;d s/$-name :before ((self class-name))
(mvaltd-p (slot-value self ‘slot-name))
(setf (slot-value self ‘slot-name)

recomputation-formula)))

The body of the method uses the CLOS accessor s 1 o t -
value to avoid recursively calling this method or a
setf method. This technique is common in before-
methods that wish to prepare the data without getting
trapped in infinite recursion. This implementation of
lazy slots prevents the slot accessors themselves from
having to know that the slot is lazy. Instead they can as-
sume that whenever they are called, the correct value is
there.

After-methods execute after all primary methods. If
one or more primary methods have executed, all after-
methods are executed from the least to most specific.
This order is the opposite of the order in which before-
methods are executed. Again, all after-methods are ex-
ecuted if any primary method is executed, so they
should only be used when any subclass will need the
same behavior.

After-methods are used in PICASSO to implement
side effects that require a fully initialized object. As an
example, the new-instance method, which is called
to initialize a new instance of a class, has an after-
method for collections that creates the children objects
in the collection. It is more efficient to wait until the col-
lection is properly initialized before creating the chil-
dren objects, so an after-method is ideal. After-methods
are also defined on new-instance to perform other
side effects such as informing the geometry manager
that a new widget has been added to a collection. These
side effects are best handled after the object has been
properly initialized.

Around-methods wrap behaviors around the rest of
the methods. In structure, they are much more like pri-
mary methods than before- or after-methods. When a

83

method is invoked, the most specific around-method is
called even if there is a more specific primary, before-,
or after-method. If an around-method calls call-

next-method the next most specific around-method is
called. If and when the most general around-method
calls call-next-method, all of the before-methods
execute, followed by the most specific primary method
and any more general primary methods called by it, and
then all of the after-methods arc executed. At this point,
control returns to the most general around-method and
back up the around-methods as each returns.

Around-methods are used in PICASSO to prevent pri-
mary methods from executing. Section 3 discussed an
example in which an instance around-method prevents
the primary setf method from executing if no change
has occurred. Around methods are also useful because,
unlike before- and after-methods, they can rctum val-
ues. In some cases, such as the creation and invocation
of PO’s, around-methods are used to allow values to bc
correctly returned when they cannot be computed until
after all after-methods have executed.

Method combinations have another use when com-
bincd with bushy abstract class hierarchies. Proper use
of method combinations allows the maximum sharing
of code. Using only primary methods, a subclass and
superclass have three phases of execution (subclass be-
fore call-next-method, superclass, subclass after
call-next-method). Adding before-, after-, and
around-methods provide twelve different phases. The
method invoke for PO’s, which calls a PO, is dcfincd
in eleven pieces: It handles paramctcr passing, allocat-
ing lexical children, managing the display, and event
handling. Figure 10 shows these clcvcn methods dc-
lined for invoke. Figure 11 shows the order in which
these methods arc called when a PICASSO frame is
called. Recall that the class precedence list for frame is
frame, callable-PO, Picasso-object.

Using method combinations to create laycrcd bchav-
iors has benclits and drawbacks. The main bcnelit is
that more code can be implcmcnted once for the class
picasso-object rather than several times. The biggest
drawback is that the implementation is very compli-
cated and requires a clear understanding of the intent of
each phase of the method calls. The original implemcn-
tation of PO’s did not use these layered methods. As a
result, much of the code that was shared by different PO
classes (e.g., notification of parents, invoking contained

picasso-object before handles in-use objects, allocates win-
dow system resources

picasso-object primary processes parameters, allocates local
vars, resolves references to cxtcmal

1 objects I
picasso-object after notify parent of self, exccutc sctup-

and init-code

top-level-p0 before places PO on root window
I

top-level-p0 after handles mouse warping and cxposurc

1 callable-p0 1 primary I proccsscs contained form variables I

I callablepo I after I invokes contained form I
handles package search list, calls

I frame I around I handles nested calls, starts event loop I

Figure 10: Invoke Methods for PICASSO Objects

forms, and rcsourcc allocation) could not bc placed in
the superclass methods due to execution order con-
straints. Consequently, the code was copied into the
methods for each PO class which made maintcnancc
difficult. This poor design was so difficult to dcvclop
further that we redesigned the PO class hierarchy. By
virtue of our prior expericncc, WC were able to see the
actions that dcpcnded on other actions and developed a

Class

frame

Type Description

around check for and conceal existing frame,
set invoked frame’s parent to tool

picasso-object before check to see if frame is in use.
allocate X resources for frame

callable-p0 primary no action taken until returned to latct

picasso-object primary process all variables and parameters,
allocate lexical children

callable-p0 primary establish local aliases for form vars.

picasso-object after notify lexical parent of call
execute setup- and init-code

callable-po after invoke form with appropriate args

frame around put frame on call-stack and start
event-loop.

Figure 11: Invocation of a Frame

84

cleaner layering of behavior.
Multimethods and method combinations make it

possible to write very compact, modular code that takes
full advantage of the object system’s built-in method
dispatcher. However, extensive use of these techniques
can result in code which is complex and hard to main-
tain. Performance, of course, will depend on the imple-
mentation of the object system.

5. Discussion

This section discusses the impact CLOS had on the
development of PICASSO and some performance issues
encountered during development.

CLOS made developing PICASSO fast and easy. The
entire constraint system, including propagation and trig-
gers, was implemented in 350 lines of code. The lazy
evaluation slots referred to above were implemented in
50 lines of code. The entire application framework (in-
cluding all PO’s, the lexical environment, and PICASSO
variables) was implemented in under 2000 lines of
code. We estimate that writing the framework and tool-
kit without CLOS, just in Common Lisp, would require
twice as many lines of code. The CLOS features dis-
cussed in this paper (i.e., multiple inheritance, instance
methods, and method combinations) have saved 5000 to
10,000 lines of code and their use resulted in a cleaner
implementation.

For the most part, CLOS has also been a great benefit
when adding new features and prototyping changes.
Method combinations have made it easy to experiment
with new ideas. Multiple inheritance allowed us to im-
plement widgets such as radio-button groups in under
100 lines of code.

With all this saved code and the benefit of the class
abstraction, you might infer that CLOS made PICAS-
SO’s implementation easier to understand. In fact, the
opposite was more often the case. CLOS complicated
the system and made it harder for new researchers to
make major changes.

Multiple inheritance required each superclass, and
almost any class should expect to become a superclass,
to be designed to share superclass responsibilities. For
example, each method had to invoke call-next-

method even if the superclass had no next method,
since a subclass might inherit this method from two su-
perclasses and call-next-method is the way for the
second superclass’ method to be invoked. Conse-

quently, many methods had to be defined on the class at
the top of the hierarchy (i.e., window) to serve as place-
holders. These methods are required because subclass
methods that call-next-method generate an error if
no method is available.

This problem surfaces in even the simplest example
of multiple inheritance. Figure 12 shows a simple mul-
tiple inheritance situation where houseboat inherits
from house and from boat. A method clean is defined
on house (i.e., clean floors and windows) and on boat
(i.e., scrape barnacles). Since cleaning a houseboat in-
volves both sets of tasks we want the clean method for
houseboat to call both of the superclass clean meth-
ods. This cannot be accomplished in CLOS using stan-
dard method calls without changing the definitions of
clean for one or both superclasses and without defin-
ing a clean method on some root class (e.g., t) to han-
dle houses or boats that are not houseboats. This
problem stems from the fact that CLOS uses call-next-
method to invoke methods both up the tree from the
present method and in sibling branches. Since house
and boat have no superclasses, and were not designed to
exist as co-superclasses, they cannot share any methods.

A possible solution to this would involve providing
several standard ways to dispatch methods. Mixins typ-
ically work well using the present class-precedence list
system. Factored behaviors, however, often would ben-
efitfrom asystem where call-next-method actually
called ail of the methods in the superclasses in order.
There are certainly other models of method invocation
that apply in other circumstances. We expect that CLOS
developers will use the metaclass protocol to define
some of these behaviors and make them available in in
an easy-to-use form.

Figure 12: Houseboat Inheritance Hierarchy

85

Because the metaclass protocol was still under de-
velopment and because or our own lack of expertise in
this area, we chose to work around these difficulties by
designing classes to share superclass responsibilities.
We found that teaching developers to design clean
methods for multiple inheritance took some effort, but
good programmers were able to write such methods
with a couple of week’s practice.

The next problem was that the CLOS model of in-
heritance does not support or encourage encapsulation.
As a result, all behaviors of all superclasses have to be
well-understood before writing a new subclass. We dis-
covered that conventional documentation did not ad-
dress this problem. An interactive, dynamic form of
documentation that indicates non-overridden inherited
behaviors in the documentation of each child is needed.
Moreover, a good development environment should
provide an interactive object inspector and class hierar-
chy browser similar to the tools provided by Genera
[12] or SmallTalk [4].

A Iinal difficulty with multiple inheritance is that the
class inheritance order matters. While this concept is
not difficult to understand, many of our methods are or-
der-dependent and we found that avoiding circular de-
pendencies was often difficult. As a result, method
combinations were used to isolate explicitly layered be-
haviors.

Instance methods presented almost no problems for
our developers. While most programmers had not heard
of them, they were easy to understand and use. Indeed,
instance methods turned out to be the one feature of
CLOS that simplified code and made it more compact.

Method combinations, even more than multiple in-
heritance, made the system harder to understand and
modify. The layers of abstraction must be well-under-
stood and conventional documentation was inadequate.

The final serious problem we had using CLOS is
ironically problematic with research development.
Since CLOS does little to support or encourage encap-
sulation of superclass features, each detail of the super-
class implementation is quite visible to the subclasses.
In an existing system, where superclasses towards the
root are unlikely to change, this design works well.
However, in developing PICASSO we found that major
changes were being made to these base classes rather
frequently. Most changes to a base class required re-
writing code in subclasses that inherited from the class

I Image 1 (Old) 1 (Devl) (Run)

Figure 13: Lisp Image Sizes

being changed particularly when the changes involved
adding or removing slots and methods. This effect is
partly a product of poor object-oriented design, partly
unavoidable given the nature of the changes, but partly
attributable to CLOS.

The performance of Common Lisp and CLOS con-
tinues to be a big concern because the success of a
graphical user interface can be determined by the per-
ceived responsiveness of the system. We started our de-
velopment using a portable implementation of CLOS
developed at Xerox (PCL).[1] We have since found that
some of our performance considerations have been ad-
dressed by native CLOS implementations. Neverthe-
less, the success of PICASSO is to some extent
determined by the performance of Common Lisp and
CLOS.

The two major performance concerns are space and
time. There is no question that Common Lisp and CLOS
cost us a great deal of space. Figure 13 shows the image
size for l’ICASS0 in three different Lisp environments.
The old environment uses Allegro Common Lisp with
PCL and CLX added in separately. The new develop-
ment environment includes a recent version of Allegro
Common Lisp (version 4.0.1) with CLOS and CLX
built in. It also includes debugging and profiling tools.
The new run-time environment is this development en-
vironment without the debugging and profiling tools.
All of these measurements were taken on a Sun SPARC-
Station 1 .6 The run-time memory demands of PICASSO
rarely exceed 16 megabytes which indicates that the

6 The disk space used is highly dependent on the specific
machine architecture and the quality of the compiler. For ex-
ample, Sun 3 and Sequent Symmetry images of PICASSO
are about 25% smaller and DECStation 3100 images are
about 25% larger.

86

system does not grow much when executing.7
We recognized that a Lisp system would be larger

than a similar system written in C when the project
started. For example Windows/4GL [6], a commercial
system written in C that uses the X Toolkit and OSFI
Motif look and feel, duplicates some of the functionality
of PICASSO in under 4 megabytes. We estimate that a
complete implementation of PICASSO in C would result
in an image size of 6 to 8 megabytes.

While space is a concern, we see it as a shrinking
one. We are experimenting with systems such as Alle-
gro Presto which reduces the application image size by
loading infrequently used code on demand at run-time
and reduces memory demands for multiple applications
by making Lisp code segments reentrant. Eventually,
we expect that Lisp vendors will need to provide sup-
port for shared libraries to make it practical to run sev-
eral different Lisp applications on a single workstation,

Runtime performance is largely determined by the
time it takes to do a method call. Ironically, the method
call time is not a performance bottleneck because
method combination lists are cached and a high percent-
age of methods called are in the cache. The cache re-
duces the time to call a method to approximately 2.5
times the time required to call a function. Early versions
of PCL performed poorly on multimethods, but the lat-
est CLOS implementations are only about 15% slower
for multimetbod dispatch. Instance methods are about
5% slower than conventional class-based methods.

The biggest performance problem we experienced
was with keyword parameters to functions and methods.
The Common Lisp keyword mechanism requires that
keywords be reparsed for each function called. In par-
ticular, every call-next-method reparses the keyword
parameters. This performance penalty is substantial be-
cause we use many keyword parameters so that applica-
tions can selectively override default values (e.g.
creating a text widget calls approximately 70 methods
with an average of 30 allowable keyword parameters).

We have removed keyword parameters from many
run-time critical methods and functions to improve per-
formance, but we still pay a significant overhead on ob-

7 While PICASSO does consume memory while running,
there is a fair amount of free memory “locked into” the above
images because of memory layout strategies that leave gaps
when foreign functions and libraries are loaded.

ject creation. A solution to this problem would be an
automatic system to normalize methods and method
calls. This normalization would define a unique order-
ing of keyword parameters for any function or generic
function. Then, the compilation of a method or method
call would automatically rearrange the actual keyword
arguments to match this unique ordering. Interpreted
methods and method calls would still require keyword
parsing but compiled methods and method calls would
not. We have not developed such a normalizer but ex-
pect that a Lisp implementer will have to do so to stay
performance-competitive.

A final performance consideration is the compilation
of methods generated at run-time. Triggers, propaga-
tion, and some instances of lazy evaluation require that
new methods be defined at run-time. Portable imple-
mentations of CLOS made it very difficult to compile
these methods on the fly. Native implementations pro-
vide easier access to the compiler but compilation is still
a slow operation. We are working on a background task
queue which can compile methods and functions during
idle time.

In summary, most of the programming techniques
discussed in this paper do not significantly degrade per-
formance. Multiple inheritance could cause problems
with method resolution time, but caching of method
combination lists minimizes the overhead, Instance
methods are a tiny bit slower than class methods but this
time is still better than custom dispatching. Method
combinations have lowered system performance due to
keyword processing costs and the basic overhead of
method calls. In addition, the lack of code duplication
has caused the size of the PICASSO image to shrink as
refinements were made to layer behaviors which pre-
sumably improved performance.

6. Conclusions

Using CLOS to develop the PICASSO GUIDE re-
sulted in faster development, easier prototyping, and
more modular and compact code. Taking advantage of
CLOS features created complex interactions among
classes and methods that makes it hard for a new devel-
oper to learn the PICASSO implementation and makes
certain modifications difficult. The details discussed
here are hidden from users who develop and use PIC-
ASSO applications. And, once a developer has learned
the implementation, he or she reaps the benefits of

87

CLOS and is able to accomplish a great deal in a short
time.

This paper presents some programming techniques
using CLOS that are applicable to other areas. First, in-
stance methods are effective ways of specifying in-
stance-specific behaviors and implementing slot-value
methods for lightweight virtual classes. Second, method
combinations are an effective way to reduce code dupli-
cation by layering behaviors in a cluster of classes.
And, mixin classes, when properly designed, can make
experimenting with new behaviors easy, and they can
make code much easier to read.

Lastly, several areas that need more work were iden-
tified. First and foremost is the development of a sophis-
ticated environment for CLOS development. Object
systems in general create documentation problems. For
a programmer, a tool is needed to browse the class hier-
archy and a full code walker is needed to recognize
which inherited behaviors are included and which are
preempted at a specific place in the code. Work also
needs to be done on the performance of Common Lisp
and CLOS for CLOS to be competitive with object sys-
tems based on C. In addition to speeding up method call
time, vendors must develop Lisp systems which can de-
liver applications that can run in smaller memories. This
problem may be a case where individual vendors must
part with portability while adhering to the standard to
achieve optimal performance.

Acknowledgments

Many people have worked on the design and implemen-
tation of PICASSO. David Martin developed the XCL
package and the original CLOS abstractions for the X
Window System. Donald Chinn, Ken Whaley, and
Scott Hauck worked on the early infrastructure and the
first version of the toolkit. Scott Luebking extended the
toolkit and implemented the first version of the frame-
work. Brian Smith developed much of the present PIC-
ASSO toolkit design and implementation, and he
developed the CIM facility browser shown in figure 1.
Steve Seitz implemented many of the performance en-
hancements for the toolkit as well as the label and bor-
der abstractions, and he prototyped a graphical interface
builder. Chung Liu developed many PICASSO widgets
and early applications. We also want to thank our early
users for their patience and feedback, especially Bev-

erly Becker, who developed a hypermedia system and
added hypermedia features to the toolkit.

Ul

VI

[31

[41

r51

[61

[71

PI

[91

WI

[ill

WI

References

D. Bobrow and G. Kiczales, “Common Lisp Ob-
ject System Specification”, Draft X3 Document
87-001, American National Standards Institute,
February 1987.
A. Borning, “The Programming Language As-
pects of ThingLab, a Constraint Oriented Simu-
lation Laboratory”, ACM Transactions on
Programming Lanaguages and Systems 3, 4
(Oct.1981). 353-387.
P. R. Calder and M. A. Linton, “Glyphs: Fly-
weight Objects for User Interfaces”, Proceedings
of the ACM SIGGRAPH Symposium on User In-
terface Software and Technology, October 1990.
A. Goldberg, Smalltalk-80: The Interactive Pro-
gramming Environment, Addison Wesley, Read-
ing, MA, May 1983.
D. Giuse, “KR: Constraint-Based Knowledge
Representation” in The Garnet Toolkit Reference
Manuals: Support for Highly-Interactive,
Graphical User Interfaces in Lisp (B. Myers et.
al., ed.). CMU Technical Report CS-90-117,
March 1990.
Ingres Corp., Application Editor Users Guide for
IngreslWindows 4GL, Ingres Release 6, August
1990.
S. Keene, Object-Oriented Programming in
Common Lisp, Addison-Wesley, 1988.
L. A. Rowe et. al., “The PICASSO Application
Framework”, Electronics Research Lab. Techni-
cal Report M9Ol18, March 1990.
P. Schank et. al., “PICASSO Reference Manual”,
Electronics Research Lab. Technical Report
M9Ol79, September 1990.
R. W. Scheifler and J. Gettys, “The X Window
System”, ACM Transactions on Graphics 5, 2
(April 1986).
G. L. Steele, Common Lisp The Language, Sec-
ond Edition, Digital Press, 1990.
J. Walker, D. Moon, D. Weinreb and M. McMa-
hon, “The Symbolics Genera Programming En-
vironment”, IEEE Software, Nov. 1987.

88

