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ABSTRACT 

PICASSO is a graphical user interface development en- 
vironment built using the Common Lisp Object System 
(CLOS). This paper describes how CLOS features in- 
cluding multiple inheritance, instance methods, multi- 
methods, and method combinations were used to imple- 
ment the system. In addition, the benefits and draw- 
backs of CLOS development are discussed including 
code quality, maintainability and performance. 

1. INTRODUCTION 

This paper describes the object-oriented program- 
ming techniques used to develop the PICASSO graphical 
user interface development environment (GUIDE). The 
PICASSO system is composed of approximately 40,000 

lines of Common Lisp [ 1 l] using the Common Lisp Ob- 
ject System (CLOS) [7] [ 111. Several programming 
techniques from the PICASSO implementation that take 

advantage of features in CLOS are presented. In addi- 
tion, the benefits and drawbacks of using CLOS and 
these techniques for developing a GUIDE are discussed. 

PICASSO is composed of an interface toolkit, an ap- 
plication framework, and a set of development tools. 
The toolkit provides the resources to create graphical 
user interfaces for the X window system [lo] using 
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Common Lisp. In addition to providing CLOS objects 
for standard X resources (e.g., windows, fonts, colors, 
graphics contexts, etc.), the system defines CLOS ob- 
jects for toolkit widgets. Different types of widgets 
(e.g., text, tables, pictures and drawings) are imple- 
mented as classes in CLOS. A large library of pre- 
defined widget types is provided including: radio 
buttons, pop-up and pull-down menus, check boxes, 
scrolling tables and text, and graphics [9]. In addition, 
new widgets can be defined by PICASSO users and they 
can then be used interchangeably with the predefined 
ones. 

The PICASSO application framework [8] provides 
higher-level programming constructs for building appli- 
cations. The framework provides abstractions forforms 
(the electronic counterpart of paper forms), frames 
(forms combined with pull-down menus to implement a 
major mode of an application), dialog boxes (modal in- 
teractors that are controlled with buttons) and panels 
(nonmodal dialog boxes used to implement alternative 
views of the data displayed through a frame). CLOS 
objects are defined for these abstractions. These frame- 
work objects are called PICASSO Objects (PO). 

The application framework also defines a data model 
for programming interfaces. PO’s are like procedures in 
a conventional programming language. They may de- 
fine local variables and constants, they are lexically 
scoped, and they may be called and passed parameters. 
Five types of parameter passing are supported to imple- 
ment different types of sharing including value, refer- 
ence and value-result. Due to the asynchronous nature 
of user interfaces, PICASSO also supports value/update 
parameters (the callee is updated if the caller’s variable 
changes) and value/update-result parameters. 

OOPSLA’91, pp. 75--88 
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Figure 1: CIMTOOL: A Tool for Managing IC-CIM Facilities 

A constraint system is provided that allows the pro- 
grammer to specify arbitrary constraints between vari- 
ables and object slots, and the propagation system keeps 
them up-to-date. For example, constraints are defined 
between variables in a PO and widgets that display their 
value to the user. This constraint system is similar to the 
constraint systems in ThingLab [2] and in Garnet [5]. 
Lazy evaluation of formula-constrained data is also pro- 
vided to enhance performance. For example, a button 
that displays a certain rapidly-changing value when 
pressed can use lazy evaluation to avoid processing val- 
ues that are not displayed. 

PICASSO has been used to develop applications in 
semiconductor manufacturing and education. In addi- 
tion to developing other applications, development con- 
tinues on the system itself (e.g., a direct manipulation 
application builder) and on integrating hypermedia ca- 
pabilities into applications (e.g., animation, audio, and 

full-motion video). A PICASSO application that dis- 
plays and controls information about an integrated cir- 
cuit manufacturing facility is shown in figure 1. 

CLOS is an object-oriented programming system 
built on top of Common Lisp. It provides classes and 
methods found in most object systems along with a 
number of features not provided in simpler object sys- 
tems. For example, CLOS supports: 1) multiple inher- 
itance of both attribute slots and methods, 2) instance 
methods (i.e., methods specialized for a specific object), 
3) multimethods (i.e., methods that discriminate on 
more than one argument), and 4) method combinations 
(i.e., factoring code into methods combined at run- 
time). This paper describes how these features were 
used to implement the PICASSO system. 

The remainder of the paper is organized as follows. 
The next three sections discuss the use of multiple in- 
heritance, instance methods, and method combinations. 
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Section 5 discusses the benefits derived from and diffi- 
culties encountered using CLOS. And, section 6 pre- 
sents conclusions. 

2. MULTIPLE INHERITANCE 

This section describes several ways that multiple in- 
heritance was used to simplify the PICASSO code. In 
CLOS, classes may inherit slot deEnitions, including 
slot attributes such as default values, and methods from 
any number of superclasses. If more than one parent de- 
fines a slot or method with the same name, an inherit- 
ance order, called a class precedence list, is used to 
determine the slot or method inherited. For a given 
class, the class precedence list is determined by the or- 
der in which the superclasses ate specified in the class 
definition. This list is followed in a depth-first fashion, 
but search is cut off by a common superclass. For exam- 
ple, figure 2 shows a set of class detinitions employing 
multiple inheritance and figure 3 shows the class inher- 
itance graph for these definitions. An instance of class 
F has three slots. slot-3 has a default value of 31, as 
is specified in the definition of class F. slot-2 has a 
default value of 21, not 2 0, because D precedes C in 
class F’s class definition. slot-1 has a default value of 
11, not 10, because F inherits from B before inheriting 
from the common superclass A. 

Thus, in this example, the complete class precedence 
list for F is (F, D, C, B, A). In addition to using this or- 
der to search for methods and slot deEnitions, CLOS 
uses this list for call-next-method, the mechanism 

(defclass A () 
((slot-l :initform 10))) 

(defclass B (A) 
((slot-l :initform 11))) 

(defclass C (B) 
((slot-2 :initform 20))) 

(defclass D (A) 
((slot-2 :initform 21))) 

(defclass E (C D) 
((slot-3 :initform 31))) 

(defclass F (D C) 
((slot-3 :initform 31))) 

Figure 2: Class Definitions 

Figure 3: Class Inheritance Graph 

for invoking the same generic function in a superclass. 
Multiple inheritance is used to improve code sharing 

among classes and to localize code that might need to be 
modified. Multiple inheritance was used in PICASSO to 

implement factored behaviors and abstract classes. 
We use the term factored behaviors to refer to 

separating the different roles that objects play into dif- 
fercnt superclasses. For example, output and input be- 
haviors are separated into the classes gadget and 
widget, respectively. A text gadget can display text but 
cannot receive input. A blank button that can be 
pressed, but displays nothing is a widget. Interface ob- 
jects, which we generically refer to as widgets, inherit 
from both classes. Most text fields can be edited and 
therefore mix the behaviors of the display-only text gad- 
get class with the editing behaviors of the text widget 
class. And, most buttons mix display behavior (i.e., dis- 
playing a text label or picture in the button) with input 
behavior [i.e., detecting and responding to mouse button 
presses). Titles and other decorative trim in a form can- 
not be changed by the user so they can bc implcmentcd 
by a gadget. 

The first implementation of PICASSO did not factor 
input and output behaviors into diffcrcnt classes. As a 
result, it was difficult to improve the performance of 
widgets that did not need all of the input behaviors as- 
sociated with the class widget. Specifically, the pcrfor- 
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mance of text labels and of menus was unacceptably 
slow. Factoring the behaviors allowed us to separate out 
the more costly event-handling and input-oriented be- 
haviors and to use lightweight text and picture gadgets 
for higher performance. 

Later, we introduced synthetic gadgets for very-high 
performance areas where even a gadget was too ineffr- 
cient. Synthetic gadgets are not CLOS objects. They are 
display lists with the correct methods defined on them. 
They are similar to glyphs in Inter-Views [3] and are 
used in PICASSO for elements in tables and menus. This 
iterative process of continual factoring for the sake of 
performance has happened several times in the develop- 
ment of PICASSO. 

It is virtually impossible to implement cleanly fac- 
tored behaviors without multiple inheritance. A single 
inheritance system forces the programmer to specify de- 
scendant behavior as a customization of a single parent. 
PICASSO widgets, however, tend to inherit from at least 
two superclasses, both of which define many slots and 
methods. Figure 4 shows the class hierarchy for some 
typical widgets. A text-widget, for example, inherits 
behaviors from the text-gadget class that displays text 
and from the widget class that incorporates all of the be- 
haviors of X windows (e.g., event handling). In single- 
inheritance systems, one of these behaviors would have 
to be incorporated into text-widget in a different way. 

Figure 4: Widget/Gadget Class Hierarchy 

Factoring behaviors produces classes that can stand 
alone (e.g., they can be instantiated) and combined to- 
gether to mix their behaviors. However, sometimes 
classes are created that will never be instantiated. They 
define code used in other classes. We call these classes 
abstract classes. Two reasons for using abstract classes 
are to modularize code and create mixins. 

Abstract classes helped modularize the code behind 
the PICASSO application framework. Figure 5 shows 
the class hierarchy for the PO classes. The classes pic- 
asso-object, top-level-po, and callable-p0 are never in- 
stantiated. Instead, picasso-object holds code common 
to all PO’s (e.g., call and return semantics, lexical and 
variable-holding behaviors, and grouping behaviors in- 
herited from collection-widget). Top-level-po adds the 
special behaviors needed by PO’s that are displayed di- 
rectly on the root-window as opposed to being con- 
tained inside other PO’s (i.e., tools, panels, and dialog 
boxes). Callable-po adds the behaviors of PO’s that are 
called like functions and coroutines (i.e., frames, panels, 
and dialog boxes). By using abstract classes and multi- 
ple inheritance, these behaviors are separated into dis- 
tinct modules. Otherwise, code would either have to be 
duplicated (by placing the common behaviors in each 
picasso-object subclass) or moved into the superclass 

Figure 5: PICASSO Object Class Hierarchy 
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picasso-object and then selectively enabled when 
needed. Duplicating code causes maintenance prob- 
lems and moving code into picasso-object hurts both 
performance and code maintainability by making super- 
class behaviors dependent on their subclasses. 

Mixins are behaviors that can be added into any of a 
number of other classes. They are “mixed in” by creat- 
ing a new class that inherits from both the original or 
base class and the mixin class. Mixins have two major 
benefits in developing a GUIDE such as PICASSO. 
First, they allow behaviors to be shared among classes 
that are otherwise distantly spread across the class hier- 
archy. Second, they allow easy prototyping in situations 
where behaviors may or may not belong in certain 
classes. As an example, the behavior of holding vari- 
ables (and therefore being a lexical entity) in PICASSO 
is defined by the mixin class variable-holder. It was 
clear through most of the development of the frame- 
work that PO’s should be variable holders, but it was not 
clear whether any other entities should also be variable 
holders. Specifically, collections which hold other wid- 
gets for grouping behaviors and tables could arguably 
benefit from holding variables. For development pur- 
poses, variable holding behaviors could easily be mixed 
into these classes to explore this option. 

Designing mixin classes is trickier than designing 
ordinary classes because an effective mixin should not 
disturb the other operations of the class it is being mixed 
into. A mixin must not conflict with the slots and meth- 
ods that may be defined in any class except where nec- 
essary for the operation of the mixin. In this case, 
variable-holder required a single slot to hold the vari- 
able table and a single accessor method for that table. 
The rest of the class hierarchy was not permitted to use 
that slot or method name. 

Multiple inheritance greatly simplifies the develop- 
ment and maintenance of a large system such as PIC- 
ASSO. There are some cases, however, where multiple 
inheritance is too cumbersome to use. The main disad- 
vantage of mixins is the combinatorial explosion in the 
number of classes that must be defined if all of the be- 
haviors defined in the mixin classes can be combined 
orthogonally. This large number of classes reduces the 
maintainability of the code by requiring developers to 
understand a great number of classes and to code all 
mixins orthogonally to prevent conflicts in common de- 
scendants. A large number of classes is also inefficient 

since the creation of a class that may not be needed 
wastes both processing time and memory. Some object 
systems support dynamic classes which are instantiated 
at run-time as needed. Dynamic classes remove the run- 
time inefficiency of a large class space by allowing 
classes to be specified as a list of superclasses. The next 
section presents an alternative solution to this problem 
mat uses instance methods. 

3. Instance Methods 

Instance methods discriminate on the value of an ar- 
gument rather than the class of the argument. They de- 
fine a behavior for a single instance of a class. Slot- 
value methods define a behavior for all instances of a 
class that have a specific value in a particular slot. 
CLOS provides an eql method structure that can be used 
to implement instance and slot-value methods. 

Instance methods are used in PICASSO to implement 
the propagation system that constrains slot values to be 
equal to the result of specified functions of other slot 
values.’ The Lisp form setf is used to set slot values 
with the expression:2 

(setf (slot-name object) new-value) 

This form invokes a method named (setf slot- 
name) that takes the new value and the object as argu- 
ments and discriminates on the class of the object. 
set f methods can be written just as any other methods. 

A simple implementation of propagation can use the 
set f method for all classes to check whether the 
change requires a propagation to occur when any slot 
value is set. This solution is inefficient, even with cach- 
ing, since setting a slot value must be a fast operation 
and relatively few slots have propagations that depend 
on them. By using instance methods, the propagation 
behavior is added only to the speciEc slots of objects 
that need to propagate their changes. These are the slots 
and objects referred to as arguments in the function used 
to constrain another slot. 

In this case, the preexisting setf method for an object 
slot is augmented by defining an eql around method. 

’ Propagation also constrains PICASSO variables, but since 
variables are implemented as CLOS objects the same mcch- 
anism can be used. 

2 Technically, setf is a macro that expands into functions 
and methods depending upon the target being set. 
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Around-methods, discussed in more detail in section 4, collection of routines that pack children within a collec- 
wrap themselves around primary methods. They are in- tion when called. A geometry manager also has rou- 
voked first, and the primary method is called under their tines that respond to asynchronous changes to the 
control. After the primary method returns, control re- children in the collection (e.g., adding or removing a 
turns to the around-method. In other words, the around- child), requests from children for different sizes, and 
method specifies code to execute before and after the notifications that the collection itself is being resized. 
primary method. For propagation, the following Approximately ten geometry managers are provided in 
method is dynamically defined for any object slot that PICASSO (see figure 6) and new ones can be added by 
must be propagated: defining the appropriate functions. 

(defmethod (setf slot-name) :around 
(value (self (eql objecr))) 

(unless (equal (slot-value self ‘slo~-~~~me) value) 
(call-next-method) 
(propagate 

(gethash unique-key ‘prop-table*)))) 

The argument list for this method indicates that it ap- 
plies for any value, but only for the specific object des- 
ignated. The body of the method checks first to assure 
that the slot value indeed changed to cut off loops. 
Then, the primary method is called to update the slot 
value. Notice that this approach insures that any error 
checking, side effects, or other processing will be done. 
Once the primary method returns, the around-method 
calls the propagate function to pass on the changes to 
whatever slots have registcrcd interest in this slot value. 

The obvious implementation defines an abstract 
class for each geometry manager and mixes that class 
into the base collection classes to yield a different class 
for packed-collection-gadget, rubber-sheet-collec- 
tion-gadget, etc. This approach leads to 30 or 40 new 
classes and even more classes if subclasses of collec- 
tions (e.g., form, table, etc.) may be defined with each 
of these geometry managers. It also makes it more diff- 
cult for a user-defined geometry manager to be fully in- 
corporated into the system because the user must add 
many new classes. 

Custom set f methods are used for virtual slots and 
PICASSO variables. Virtual slots are implemented as 
methods to access and update a value without actually 
storing the value. The set f method dots not check for 
a change since no old value can exist. PICASSO vari- 
ables, for efficiency, always propagate since most vari- 
ables have propagations. This example illustrates 
another benefit of instance methods: different variants 
of the method can be defined to optimize cases that do 
not deserve their own classes. 

CLOS provides two solutions to this problem. One 
solution is to create these classes dynamically as they 
are needed. Classes can be dynamically created rather 
easily with a metaclass protocol feature that allows a 
class to be inserted into another class’ superclass list. 
While this solution is a perfectly reasonable implemen- 
tation, a different solution was used in PICASSO because 
the metaclass solution results in less obvious code and 
greater difficulties when changing a collection’s geom- 
etry manager. 

The PICASSO solution uses slot-value methods to 

Name Function 
Slot-value methods are also used to overcome the 

problems of combinatorial class explosion introduced 
by multiple inheritance. The different slot values define 
a set of virtual classes each of which has the same slots 
and class-discriminating methods but different slot- 
value methods. The following two examples show how 
virtual classes reduce the number of classes in the sys- 
tem and make changing classes faster and easier. 

Geometry management is the process of sizing and 
laying out windows within a parent window. This pro- 
cess is implemented in PICASSO by a geometry man- 
ager that is bound to a collection. A geometry manager 
includes a data structure that holds layout hints and a 

anchor-gm 

just-pack-gm 

left-pack-gm 

linear-gm 

matrix-gm 

menu-gm 

null-gm 

packed-gm 

root-gm 

rubber-gm 

stacked-gm 

controlled stretch and relative positioning 

full-width menu bars 

compressed (pushed left) menu bars 

linear stretch (useful for bordered objects) 

tabular layout 

layout of menu entries 

default, places objects where they request 

perpendicular packing (useful for forms) 

special manager for root window 

rubber sheet (controlled stretching) 

vertical and horizontal stacks for palettes 

Figure 6: Geometry Managers Defined for PICASSO 



call the appropriate geometry manager. Since each col- 
lection has exactly one geometry manager, we include a 
slot in the collection that holds the name of the geome- 
try manager (i.e., a Lisp symbol). The methods that im- 
plement a specific geometry manager discriminate on 
the value stored in this slot, rather than on the class of 
the object passed to them. For example, the method that 
handles repacking a collection is defined as 

(defmethod gc;;;pack ((gm (eql ‘my-gm)) self) 

This method is called when the first argument is the 
symbol my-gm. To make it easier to program this way, 
we add a simple macro to handle passing in the slot- 
value: 

(defmacro repack (self) 
‘(gm-repack (gm self) self)) 

Thus, we can call repack as if it were an ordinary 
method, passing only the collection as an argument, and 
it will call the correct repack method. 

The other difficulty is to allocate storage for the ge- 
ometry manager to use, since virtual classes are not real 
classes so they cannot add slots. For geometry manag- 
ers, the solution is straightforward. All geometry man- 
gers are defined to use certain slots that are present in all 
collections: 1) a children slot that holds a list of child 
windows for which the geometry manager is responsi- 
ble (in an order it manages) and 2) a gm-data slot that 
holds other data including layout hints and cached re- 
sults. The geometry manager routines are given com- 
plete control of this gm-data structure, and they can 
use it for any purpose. 

A second use of slot-value methods in PICASSO is 
for widget borders and labels. A border describes the 
graphics that surround a widget to enhance its visual 
appearance. Many borders are provided including drop- 
shadows, picture frames, and boxes. A label contains 
text or an image that identifies the widget. They can be 
positioned in various locations including to the left, 
above, or below the widget or in a smaller font in the 
frame. Figure 7 shows some of the borders and labels 
provided with PICASSO. LJsers can define additional 
borders and labels by naming them and defining appro- 
priate methods. 

Labels and borders are implemented using the same 
technique we used for geometry managers. Since the 
data structures used by borders and labels are better de- 
fined, they are given more detailed slot assignments in- 

Figure 7: PICASSO Borders and Labels 

eluding label-x,label-y,label-position, 

label-value,border-type, and border-width. 
When no border or label is desired, there is a small 
space penalty for these extra slots but no method is ex- 
ecuted so the time penalty is insignificant. 

There are several benefits to using slot-value meth- 
ods as an implementation of virtual classes. First, they 
are easy to implement and extend. For example, a new 
geometry manager, label, or border can be added by se- 
lecting a name and defining a couple of methods. The 
performance penalty when used is small (i.e., the cost of 
accessing the slot-value before method discrimination) 
and the performance penalty when not used is small 
(i.e., the unused extra space). And, it is easy to change 
the virtual class of an object by changing the value in the 
appropriate slot. 

With these benefits come some limitations as well. 
The two biggest limitations are the inability to define 
slots in virtual classes and the very limited inheritance 
available. Since virtual classes are not classes, they can 
only use the slots defined in the classes into which they 
arc mixed. This limitation requires that all classes for a 
given virtual class must use the same slots, which typi- 
cally limits this technique to small features implement- 
ing different versions of the same attribute. 
Additionally, the inheritance available for virtual 
classes is minimal. Since they are based on symbol 
equality, there is a very strict two-level virtual class tree. 
At the root is the class t that applies to everything and at 
the leaves are all of the virtual classes? As a result, vir- 
tual classes implemented this way do not work well 
when there are large amounts of code to be shared 
among some, but not all, of the variants. 



4. Multimethods and Method Combinations 

As we have seen, CLOS allows very powerful 
method constructs that can discriminate on both class 
membership and equality. This section describes how 
PICASSO used CLOS multimethods and method combi- 
nations. 

PICASSO has tended to avoid using multimethods 
due to performance considerations which are discussed 
in the following section.4 Multimethods have been 
used, however, to prototype behaviors that were later 
implemented in other ways or in some cases abandoned. 
Two examples are the development of type-sensitive 
widgets and methods that handle different types of win- 
dows. 

A feature tested in an early version of PICASSO was 
a type-sensitive widget. This type of widget would dis- 
play only certain types of values (e.g., integers, strings, 
or arrays). The widget would change itself into a differ- 
ent widget if it was set to a value that it was unable to 
display. In this way, a single widget could be created to 
display a numerical value. If, for some reason, a picture 
was assigned to that widget, it would automatically 
change itself into a picture-widget. 

Implementing this type of automatic class changing 
was simplified by writing set f methods that discrimi- 

3 Another possible implementation would create a class for 
each geometry manager, label or border and place an in- 
stance of that class in a slot in the collection or widget. This 
implementation solves the slot and inheritance problems but 
is no longer a lightweight implementation. Indeed, it merely 
adds a list of components to an object, each of which has its 
own methods, with methods on the holder that invoke meth- 
ods on the proper component. We initially chose not to 
employ this implementation but are now experimenting with 
implementing geometry managers in this fashion. Should 
this experiment prove successful, we hope to determine cri- 
tcria for deciding when to use this technique and when to 
use virtual classes. 

4 In an earlier system we tried to use multimethods to imple- 
ment event dispatching. A generic dispatch function was 
defined that took an event and window object and discrimi- 
nated on both. Besides learning that multimethods were not 
implemented correctly in the early CLOS implcmcntation we 
were using, we also quickly realized that method dctermina- 
tion for multimethods was too slow for event dispatching. 
More recent experiments discussed in section 5 show that 
multimethod dispatching in a native CLOS implementation is 
only slightly slower than ordinary dispatching. We expect to 
make greater use of multimethods in the future. 

nated on the type of the value as well as the type of the 
widget. There would be a method to set meter-widgets 
to integers and floating point numbers but not to strings. 
The default method for widgets would then change the 
class of the widget into one that could display the new 
value. The performance of multimethods was not a 
problem in this situation because this operation was ex- 
ecuted infrequently and changing classes was already 
slow. However, we abandoned this idea for a more llex- 
ible synthetic gadget5 

PICASSO still uses multimethods for a few cases 
where operations depend on two different widgets or 
gadgets. In some cases, there is a simple X server call 
that can perform operations on two X windows (e.g., 
calculating relative coordinates or positions in the win- 

dow hierarchy) but does not operate on non-X windows 
(e.g., gadgets and synthetic gadgets). In these cases, a 
method is defined that discriminates on the class of both 
objects. If they are both X windows, the server call is 
performed. Otherwise, toolkit code is executed to per- 
form the operation. 

Multimethods could be replaced in all cases with 
code that resembles a case structure. Inclusion of mul- 
timethods allows programmers to take advantage of the 
built-in CLOS method dispatching, with its caching and 
other performance tuning, rather than writing ad hoc, 
and likely less performance tuned, custom dispatchers. 

In CLOS each generic function has primary methods 
as well as before-, after-, and around-methods. These 
additional methods layer their execution on top of the 
primary method. Suppose that we have two classes su- 
per and sub and that a method foo has a primary, be- 
fore-, after-, and around-method on each class. Figure 

8 shows the method definitions for class sub. The defi- 
nitions are the same for class super except that the for- 
matted print statements read “SUPER” and the primary 
method does not execute the call-next-method call. 

When the method f oo is called on an instance of sub 
the output shown in figure 9 is produced by the format 
calls. In each case where (call-next-method) ap- 

5A synthetic gadget contains only data and a list of dis- 
play parameters. The method put is defined on each data 
type to paint the data onto the screen. Where a text gadget is 
an object with many slots representing all of the possible 
functionality for text and windows, a text synthetic gadget 
contains only a string, a location for painting, a font, and 
some colors. 
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(defmethod foo ((self sub)) 
(format t “Entering SUB Primary Method”) 
(call-next-method) 
(format t “Exiting SUB Primary Method”)) 

(defmethod foo :before ((self sub)) 
(format t “SUB Before Method”)) 

(defmethod foo :after ((self sub)) 
(format t “SUB After Method”)) 

(defmethod foo :around ((self sub)) 
(format t “Entering SUB Around Method”) 
(call-next-method) 
(format t “Exiting SUB Around Method”)) 

Figure 8: Method Definitions for Class sub 

pears, not executing that expression would result in 
skipping forward to the corresponding “Exiting” clause 
without executing any additional methods in between. 
For example, if the f oo around method for sub did not 
execute call-next-method, none of the other meth- 
ods would be called. 

Before-methods execute before any primary meth- 
ods. Before a primary method is executed, all before- 
methods that apply are executedfrom most tu least spe- 
cific. Even if a superclass’ primary method is not exe- 
cuted, its before-methods are always executed. 
Therefore, before-methods should only be used when 
any possible subclass will also need the same behavior. 

In PICASSO, before-methods have a natural place in 
implementing lazy evaluation slots. These slots are typ- 

Entering SUB Around Method 

Entering SUPER Around Method 

SUB Before Method 

SUPER Before Method 

Entering SUB Primary Method 

Entering SUPER Primary Method 

Exiting SUPER Primary Method 

Exiting SUB Primary Method 

SUPER After Method 

AUB After Method 

Exiting SUPER Around Method 

Exiting SUB Around Method 

Figure 9: Call Sequence for Method Combinations 

ically defined for a class, although they can also be de- 
fined for an instance. Lazy evaluation slots check a 
cache stored in the slot for validity when the slot is ac- 
cessed. If the cached value is valid, it is returned. If not, 
the cached value is recomputed. The cache is automat- 
ically invalidated when appropriate. It is assumed that 
there may be primary methods on the slot to properly 
convert data or perform side effects. This lazy slot be- 
havior is implemented with the following before- 
method: 

(defrn;pe;d s/$-name :before ((self class-name)) 
(mvaltd-p (slot-value self ‘slot-name)) 
(setf (slot-value self ‘slot-name) 

recomputation-formula))) 

The body of the method uses the CLOS accessor s 1 o t - 
value to avoid recursively calling this method or a 
setf method. This technique is common in before- 
methods that wish to prepare the data without getting 
trapped in infinite recursion. This implementation of 
lazy slots prevents the slot accessors themselves from 
having to know that the slot is lazy. Instead they can as- 
sume that whenever they are called, the correct value is 
there. 

After-methods execute after all primary methods. If 
one or more primary methods have executed, all after- 
methods are executed from the least to most specific. 
This order is the opposite of the order in which before- 
methods are executed. Again, all after-methods are ex- 
ecuted if any primary method is executed, so they 
should only be used when any subclass will need the 
same behavior. 

After-methods are used in PICASSO to implement 
side effects that require a fully initialized object. As an 
example, the new-instance method, which is called 
to initialize a new instance of a class, has an after- 
method for collections that creates the children objects 
in the collection. It is more efficient to wait until the col- 
lection is properly initialized before creating the chil- 
dren objects, so an after-method is ideal. After-methods 
are also defined on new-instance to perform other 
side effects such as informing the geometry manager 
that a new widget has been added to a collection. These 
side effects are best handled after the object has been 
properly initialized. 

Around-methods wrap behaviors around the rest of 
the methods. In structure, they are much more like pri- 
mary methods than before- or after-methods. When a 
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method is invoked, the most specific around-method is 
called even if there is a more specific primary, before-, 
or after-method. If an around-method calls call- 

next-method the next most specific around-method is 
called. If and when the most general around-method 
calls call-next-method, all of the before-methods 
execute, followed by the most specific primary method 
and any more general primary methods called by it, and 
then all of the after-methods arc executed. At this point, 
control returns to the most general around-method and 
back up the around-methods as each returns. 

Around-methods are used in PICASSO to prevent pri- 
mary methods from executing. Section 3 discussed an 
example in which an instance around-method prevents 
the primary setf method from executing if no change 
has occurred. Around methods are also useful because, 
unlike before- and after-methods, they can rctum val- 
ues. In some cases, such as the creation and invocation 
of PO’s, around-methods are used to allow values to bc 
correctly returned when they cannot be computed until 
after all after-methods have executed. 

Method combinations have another use when com- 
bincd with bushy abstract class hierarchies. Proper use 
of method combinations allows the maximum sharing 
of code. Using only primary methods, a subclass and 
superclass have three phases of execution (subclass be- 
fore call-next-method, superclass, subclass after 
call-next-method). Adding before-, after-, and 
around-methods provide twelve different phases. The 
method invoke for PO’s, which calls a PO, is dcfincd 
in eleven pieces: It handles paramctcr passing, allocat- 
ing lexical children, managing the display, and event 
handling. Figure 10 shows these clcvcn methods dc- 
lined for invoke. Figure 11 shows the order in which 
these methods arc called when a PICASSO frame is 
called. Recall that the class precedence list for frame is 
frame, callable-PO, Picasso-object. 

Using method combinations to create laycrcd bchav- 
iors has benclits and drawbacks. The main bcnelit is 
that more code can be implcmcnted once for the class 
picasso-object rather than several times. The biggest 
drawback is that the implementation is very compli- 
cated and requires a clear understanding of the intent of 
each phase of the method calls. The original implemcn- 
tation of PO’s did not use these layered methods. As a 
result, much of the code that was shared by different PO 
classes (e.g., notification of parents, invoking contained 

picasso-object before handles in-use objects, allocates win- 
dow system resources 

picasso-object primary processes parameters, allocates local 
vars, resolves references to cxtcmal 

1 objects I 
picasso-object after notify parent of self, exccutc sctup- 

and init-code 

top-level-p0 before places PO on root window 
I 

top-level-p0 after handles mouse warping and cxposurc 

1 callable-p0 1 primary I proccsscs contained form variables I 

I callablepo I after I invokes contained form I 
handles package search list, calls 

I frame I around I handles nested calls, starts event loop I 

Figure 10: Invoke Methods for PICASSO Objects 

forms, and rcsourcc allocation) could not bc placed in 
the superclass methods due to execution order con- 
straints. Consequently, the code was copied into the 
methods for each PO class which made maintcnancc 
difficult. This poor design was so difficult to dcvclop 
further that we redesigned the PO class hierarchy. By 
virtue of our prior expericncc, WC were able to see the 
actions that dcpcnded on other actions and developed a 

Class 

frame 

Type Description 

around check for and conceal existing frame, 
set invoked frame’s parent to tool 

picasso-object before check to see if frame is in use. 
allocate X resources for frame 

callable-p0 primary no action taken until returned to latct 

picasso-object primary process all variables and parameters, 
allocate lexical children 

callable-p0 primary establish local aliases for form vars. 

picasso-object after notify lexical parent of call 
execute setup- and init-code 

callable-po after invoke form with appropriate args 

frame around put frame on call-stack and start 
event-loop. 

Figure 11: Invocation of a Frame 
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cleaner layering of behavior. 
Multimethods and method combinations make it 

possible to write very compact, modular code that takes 
full advantage of the object system’s built-in method 
dispatcher. However, extensive use of these techniques 
can result in code which is complex and hard to main- 
tain. Performance, of course, will depend on the imple- 
mentation of the object system. 

5. Discussion 

This section discusses the impact CLOS had on the 
development of PICASSO and some performance issues 
encountered during development. 

CLOS made developing PICASSO fast and easy. The 
entire constraint system, including propagation and trig- 
gers, was implemented in 350 lines of code. The lazy 
evaluation slots referred to above were implemented in 
50 lines of code. The entire application framework (in- 
cluding all PO’s, the lexical environment, and PICASSO 
variables) was implemented in under 2000 lines of 
code. We estimate that writing the framework and tool- 
kit without CLOS, just in Common Lisp, would require 
twice as many lines of code. The CLOS features dis- 
cussed in this paper (i.e., multiple inheritance, instance 
methods, and method combinations) have saved 5000 to 
10,000 lines of code and their use resulted in a cleaner 
implementation. 

For the most part, CLOS has also been a great benefit 
when adding new features and prototyping changes. 
Method combinations have made it easy to experiment 
with new ideas. Multiple inheritance allowed us to im- 
plement widgets such as radio-button groups in under 
100 lines of code. 

With all this saved code and the benefit of the class 
abstraction, you might infer that CLOS made PICAS- 
SO’s implementation easier to understand. In fact, the 
opposite was more often the case. CLOS complicated 
the system and made it harder for new researchers to 
make major changes. 

Multiple inheritance required each superclass, and 
almost any class should expect to become a superclass, 
to be designed to share superclass responsibilities. For 
example, each method had to invoke call-next- 

method even if the superclass had no next method, 
since a subclass might inherit this method from two su- 
perclasses and call-next-method is the way for the 
second superclass’ method to be invoked. Conse- 

quently, many methods had to be defined on the class at 
the top of the hierarchy (i.e., window) to serve as place- 
holders. These methods are required because subclass 
methods that call-next-method generate an error if 
no method is available. 

This problem surfaces in even the simplest example 
of multiple inheritance. Figure 12 shows a simple mul- 
tiple inheritance situation where houseboat inherits 
from house and from boat. A method clean is defined 
on house (i.e., clean floors and windows) and on boat 
(i.e., scrape barnacles). Since cleaning a houseboat in- 
volves both sets of tasks we want the clean method for 
houseboat to call both of the superclass clean meth- 
ods. This cannot be accomplished in CLOS using stan- 
dard method calls without changing the definitions of 
clean for one or both superclasses and without defin- 
ing a clean method on some root class (e.g., t) to han- 
dle houses or boats that are not houseboats. This 
problem stems from the fact that CLOS uses call-next- 
method to invoke methods both up the tree from the 
present method and in sibling branches. Since house 
and boat have no superclasses, and were not designed to 
exist as co-superclasses, they cannot share any methods. 

A possible solution to this would involve providing 
several standard ways to dispatch methods. Mixins typ- 
ically work well using the present class-precedence list 
system. Factored behaviors, however, often would ben- 
efitfrom asystem where call-next-method actually 
called ail of the methods in the superclasses in order. 
There are certainly other models of method invocation 
that apply in other circumstances. We expect that CLOS 
developers will use the metaclass protocol to define 
some of these behaviors and make them available in in 
an easy-to-use form. 

Figure 12: Houseboat Inheritance Hierarchy 
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Because the metaclass protocol was still under de- 
velopment and because or our own lack of expertise in 
this area, we chose to work around these difficulties by 
designing classes to share superclass responsibilities. 
We found that teaching developers to design clean 
methods for multiple inheritance took some effort, but 
good programmers were able to write such methods 
with a couple of week’s practice. 

The next problem was that the CLOS model of in- 
heritance does not support or encourage encapsulation. 
As a result, all behaviors of all superclasses have to be 
well-understood before writing a new subclass. We dis- 
covered that conventional documentation did not ad- 
dress this problem. An interactive, dynamic form of 
documentation that indicates non-overridden inherited 
behaviors in the documentation of each child is needed. 
Moreover, a good development environment should 
provide an interactive object inspector and class hierar- 
chy browser similar to the tools provided by Genera 
[12] or SmallTalk [4]. 

A Iinal difficulty with multiple inheritance is that the 
class inheritance order matters. While this concept is 
not difficult to understand, many of our methods are or- 
der-dependent and we found that avoiding circular de- 
pendencies was often difficult. As a result, method 
combinations were used to isolate explicitly layered be- 
haviors. 

Instance methods presented almost no problems for 
our developers. While most programmers had not heard 
of them, they were easy to understand and use. Indeed, 
instance methods turned out to be the one feature of 
CLOS that simplified code and made it more compact. 

Method combinations, even more than multiple in- 
heritance, made the system harder to understand and 
modify. The layers of abstraction must be well-under- 
stood and conventional documentation was inadequate. 

The final serious problem we had using CLOS is 
ironically problematic with research development. 
Since CLOS does little to support or encourage encap- 
sulation of superclass features, each detail of the super- 
class implementation is quite visible to the subclasses. 
In an existing system, where superclasses towards the 
root are unlikely to change, this design works well. 
However, in developing PICASSO we found that major 
changes were being made to these base classes rather 
frequently. Most changes to a base class required re- 
writing code in subclasses that inherited from the class 

I Image 1 (Old) 1 (Devl) (Run) 

Figure 13: Lisp Image Sizes 

being changed particularly when the changes involved 
adding or removing slots and methods. This effect is 
partly a product of poor object-oriented design, partly 
unavoidable given the nature of the changes, but partly 
attributable to CLOS. 

The performance of Common Lisp and CLOS con- 
tinues to be a big concern because the success of a 
graphical user interface can be determined by the per- 
ceived responsiveness of the system. We started our de- 
velopment using a portable implementation of CLOS 
developed at Xerox (PCL).[ 1] We have since found that 
some of our performance considerations have been ad- 
dressed by native CLOS implementations. Neverthe- 
less, the success of PICASSO is to some extent 
determined by the performance of Common Lisp and 
CLOS. 

The two major performance concerns are space and 
time. There is no question that Common Lisp and CLOS 
cost us a great deal of space. Figure 13 shows the image 
size for l’ICASS0 in three different Lisp environments. 
The old environment uses Allegro Common Lisp with 
PCL and CLX added in separately. The new develop- 
ment environment includes a recent version of Allegro 
Common Lisp (version 4.0.1) with CLOS and CLX 
built in. It also includes debugging and profiling tools. 
The new run-time environment is this development en- 
vironment without the debugging and profiling tools. 
All of these measurements were taken on a Sun SPARC- 
Station 1 .6 The run-time memory demands of PICASSO 
rarely exceed 16 megabytes which indicates that the 

6 The disk space used is highly dependent on the specific 
machine architecture and the quality of the compiler. For ex- 
ample, Sun 3 and Sequent Symmetry images of PICASSO 
are about 25% smaller and DECStation 3100 images are 
about 25% larger. 
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system does not grow much when executing.7 
We recognized that a Lisp system would be larger 

than a similar system written in C when the project 
started. For example Windows/4GL [6], a commercial 
system written in C that uses the X Toolkit and OSFI 
Motif look and feel, duplicates some of the functionality 
of PICASSO in under 4 megabytes. We estimate that a 
complete implementation of PICASSO in C would result 
in an image size of 6 to 8 megabytes. 

While space is a concern, we see it as a shrinking 
one. We are experimenting with systems such as Alle- 
gro Presto which reduces the application image size by 
loading infrequently used code on demand at run-time 
and reduces memory demands for multiple applications 
by making Lisp code segments reentrant. Eventually, 
we expect that Lisp vendors will need to provide sup- 
port for shared libraries to make it practical to run sev- 
eral different Lisp applications on a single workstation, 

Runtime performance is largely determined by the 
time it takes to do a method call. Ironically, the method 
call time is not a performance bottleneck because 
method combination lists are cached and a high percent- 
age of methods called are in the cache. The cache re- 
duces the time to call a method to approximately 2.5 
times the time required to call a function. Early versions 
of PCL performed poorly on multimethods, but the lat- 
est CLOS implementations are only about 15% slower 
for multimetbod dispatch. Instance methods are about 
5% slower than conventional class-based methods. 

The biggest performance problem we experienced 
was with keyword parameters to functions and methods. 
The Common Lisp keyword mechanism requires that 
keywords be reparsed for each function called. In par- 
ticular, every call-next-method reparses the keyword 
parameters. This performance penalty is substantial be- 
cause we use many keyword parameters so that applica- 
tions can selectively override default values (e.g. 
creating a text widget calls approximately 70 methods 
with an average of 30 allowable keyword parameters). 

We have removed keyword parameters from many 
run-time critical methods and functions to improve per- 
formance, but we still pay a significant overhead on ob- 

7 While PICASSO does consume memory while running, 
there is a fair amount of free memory “locked into” the above 
images because of memory layout strategies that leave gaps 
when foreign functions and libraries are loaded. 

ject creation. A solution to this problem would be an 
automatic system to normalize methods and method 
calls. This normalization would define a unique order- 
ing of keyword parameters for any function or generic 
function. Then, the compilation of a method or method 
call would automatically rearrange the actual keyword 
arguments to match this unique ordering. Interpreted 
methods and method calls would still require keyword 
parsing but compiled methods and method calls would 
not. We have not developed such a normalizer but ex- 
pect that a Lisp implementer will have to do so to stay 
performance-competitive. 

A final performance consideration is the compilation 
of methods generated at run-time. Triggers, propaga- 
tion, and some instances of lazy evaluation require that 
new methods be defined at run-time. Portable imple- 
mentations of CLOS made it very difficult to compile 
these methods on the fly. Native implementations pro- 
vide easier access to the compiler but compilation is still 
a slow operation. We are working on a background task 
queue which can compile methods and functions during 
idle time. 

In summary, most of the programming techniques 
discussed in this paper do not significantly degrade per- 
formance. Multiple inheritance could cause problems 
with method resolution time, but caching of method 
combination lists minimizes the overhead, Instance 
methods are a tiny bit slower than class methods but this 
time is still better than custom dispatching. Method 
combinations have lowered system performance due to 
keyword processing costs and the basic overhead of 
method calls. In addition, the lack of code duplication 
has caused the size of the PICASSO image to shrink as 
refinements were made to layer behaviors which pre- 
sumably improved performance. 

6. Conclusions 

Using CLOS to develop the PICASSO GUIDE re- 
sulted in faster development, easier prototyping, and 
more modular and compact code. Taking advantage of 
CLOS features created complex interactions among 
classes and methods that makes it hard for a new devel- 
oper to learn the PICASSO implementation and makes 
certain modifications difficult. The details discussed 
here are hidden from users who develop and use PIC- 
ASSO applications. And, once a developer has learned 
the implementation, he or she reaps the benefits of 
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CLOS and is able to accomplish a great deal in a short 
time. 

This paper presents some programming techniques 
using CLOS that are applicable to other areas. First, in- 
stance methods are effective ways of specifying in- 
stance-specific behaviors and implementing slot-value 
methods for lightweight virtual classes. Second, method 
combinations are an effective way to reduce code dupli- 
cation by layering behaviors in a cluster of classes. 
And, mixin classes, when properly designed, can make 
experimenting with new behaviors easy, and they can 
make code much easier to read. 

Lastly, several areas that need more work were iden- 
tified. First and foremost is the development of a sophis- 
ticated environment for CLOS development. Object 
systems in general create documentation problems. For 
a programmer, a tool is needed to browse the class hier- 
archy and a full code walker is needed to recognize 
which inherited behaviors are included and which are 
preempted at a specific place in the code. Work also 
needs to be done on the performance of Common Lisp 
and CLOS for CLOS to be competitive with object sys- 
tems based on C. In addition to speeding up method call 
time, vendors must develop Lisp systems which can de- 
liver applications that can run in smaller memories. This 
problem may be a case where individual vendors must 
part with portability while adhering to the standard to 
achieve optimal performance. 
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