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Recommending Research Papers

Way too many papers to read — need to find the right ones so we
can get on to research!

Many papers, many reviewers — who is most qualified to judge the
work?

Working on a bibliography or reference list — who should have cited
you?
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Building a Reading List

Alice is a new grad student who took a class on adaptive web
technologies. The professor assigned some readings, and she wants to
learn more.

Herlocker et al. An algorithmic framework for performing
collaborative filtering. In Proc. SIGIR 1999.

Hoffman. Latent semantic models for collaborative filtering. In
TOIS, volume 22, issue 1 (January 2004).

Guy et al. Personalized recommendation of social software items
based on social relations. In Proc. RecSys 2009.

Karypis. Evaluation of Item-Based Top-N Recommendation
Algorithms. In Proc. CIKM 2001.

How can we find important ones to read?
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The Reading List Task

Magic

happens

here

Input

List of papers

on topic of

interest

Output

List of important

papers to read
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Domain Characteristics

Traditional CF methods are blind to item content or relationships.

The citation web has a defined structure.

Can we harness this to improve recommendation?
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Questions

Can we harness domain structure to improve recommendation of
research papers?

What algorithms perform well at building reading lists?

How can we measure this performance?
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Approach

Analyze Task
and Domain

Design
Candidate
Algorithms

Prune
Algorithm

Pool
(offline)

Evaluate
Performance
(user study)
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Designing Candidate Algorithms

Analyze Task
and Domain

Design
Candidate
Algorithms

Prune
Algorithm

Pool
(offline)

Evaluate
Performance
(user study)
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Algorithms

We adapt and combine off-the-shelf algorithms.

Collaborative filtering (CF)
Item-item CF over sets of items [Karypis, 2001]

Content-based filtering (CBF)
Lemur toolkit [Ogilvie and Callan, 2002] in BM25 mode with
recommended baseline parameters

Graph ranking

PageRank [Page et al., 1999]
HITS authority scores [Kleinberg, 1999]
SALSA [Lempel and Moran, 2000]
Relative algorithms [White and Smyth, 2003]

I Biased HITS
I k-step Markov importance
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Applying Item-Item CF

No users - papers are both users and items [McNee et al., 2002].

A B C
A X X
B X X
C X X

Becomes a form of co-citation analysis.

Ekstrand et al. (GroupLens/UMN) Automatically Building Reading Lists #recsys2010 11 / 35



Rank-Weighting CF

Inspired by [Karypis, 2001]: user influence in item similarity does not
need to be the same!

Karypis’s approach: normalize user purchase vectors to unit vectors
so users with few purchases influence item similarity more.

Our adaptation: weight citation vectors by graph rank. Highly-ranked
papers have more influence.

â = r(a)a

Use weighted citation vectors to compute cited paper similarity.
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Using Weights with CBF

Two approaches

Subgraph ranking
Build subgraph from CBF results and rank its nodes.

CBF

Expand

Rank

Query Graph
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Using Weights with CBF

Two approaches

Linear blending
Blend CBF scores with node weights in the global graph.

CBF Rank

Query Graph

αL(a) + βr(a)

Learned coefficients with multivariate logistic regression (more on this
later).
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Hybridizing Recommenders [Burke, 2002]

Several ways of blending algorithms

Use CF as input to CBF

Use CBF as input to CF

Blend output from CBF and CF to produce result

Basic algorithms + all hybrids = 177 algorithms.

Ekstrand et al. (GroupLens/UMN) Automatically Building Reading Lists #recsys2010 15 / 35



Hybridizing Recommenders [Burke, 2002]

Several ways of blending algorithms

Use CF as input to CBF

Use CBF as input to CF

Blend output from CBF and CF to produce result

Basic algorithms + all hybrids = 177 algorithms.

CF

CBF

Ekstrand et al. (GroupLens/UMN) Automatically Building Reading Lists #recsys2010 15 / 35



Hybridizing Recommenders [Burke, 2002]

Several ways of blending algorithms

Use CF as input to CBF

Use CBF as input to CF

Blend output from CBF and CF to produce result

Basic algorithms + all hybrids = 177 algorithms.

CBF

CF

Ekstrand et al. (GroupLens/UMN) Automatically Building Reading Lists #recsys2010 15 / 35
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Several ways of blending algorithms

Use CF as input to CBF

Use CBF as input to CF

Blend output from CBF and CF to produce result

Basic algorithms + all hybrids = 177 algorithms.
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Pruning the Algorithm Pool

Analyze Task
and Domain

Design
Candidate
Algorithms

Prune
Algorithm

Pool
(offline)

Evaluate
Performance
(user study)
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Designing an Evaluation Strategy

Goal: Measure algorithm performance at supporting a specific task.

Accuracy isn’t enough [McNee et al., 2006].
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Offline Evaluation

Use metadata from ACM Digital Library.

Simulate introductory reading list with hold-out test on articles in
ACM Computing Surveys.

Hold out 5 items from each citation list

Attempt to recommend back the 5 items

Skip surveys with less than 15 resolved citations

Result: 220 survey articles for training and testing.
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Interlude - Learning CBF Blending Coefficients

Use half the articles to train the CBF blend.

Learned multivariate logistic regression with response of 1 for articles
in the holdout set, 0 for other articles.

s(a) = αL(a) + βr(a)

Since we’re ranking, intercept and log don’t matter.
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Offline Evaluation (cont)

Measure using half-life utility metric [Breese et al., 1998]:

Ra =
∑
i

ua,i
2(i−1)/(α−1)

α = 5, the length of our reading lists

ua,i = 1 if article i is cited by survey a, 0 otherwise

Aggregate to compute fraction of potential utility achieved (in range
[0, 1]).

R =
1

nRmax
a

∑
a

Ra
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Offline Results — CF
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Offline Results — CBF
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Salsa performs like PageRank
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Selected Algorithms

Chose 3 algorithms that performed well but have differing structures.

CBF with Biased HITS in subgraph ranking configuration

CBF fed into PageRank-weighted CF

PageRank-weighted CF
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Evaluating Performance

Analyze Task
and Domain

Design
Candidate
Algorithms

Prune
Algorithm

Pool
(offline)

Evaluate
Performance
(user study)
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User-Based Evaluation

Asked graduate students to provide query sets of 5-10 papers and
evaluate 3 5-item reading lists.

Relevance of individual papers

Importance of individual papers

Quality of reading list as a whole

Relative ranking of reading lists

All questions were set in the context of introducing a new researcher
to the topic.
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Input Query (again)

Herlocker et al. An algorithmic framework for performing
collaborative filtering. In Proc. SIGIR 1999.

Hoffman. Latent semantic models for collaborative filtering. In
TOIS, volume 22, issue 1 (January 2004).

Guy et al. Personalized recommendation of social software items
based on social relations. In Proc. RecSys 2009.

Karypis. Evaluation of Item-Based Top-N Recommendation
Algorithms. In Proc. CIKM 2001.

How do we do?
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CF’s Recommender Systems Recommendations

Sarwar et al. Item-based collaborative fitlering recommendation
algorithms. In Proc. WWW 2001.

Resnick et al. GroupLens: An open architecture for collaborative
filtering of netnews. In Proc. CSCW 1994.

Shardanand and Maes. Social information filtering: algorithms
for automating “word of mouth”. In Proc. CHI 1995.

Deshpande and Karypis. Item-based top-N recommendation
algorithms. In TOIS, volume 22, issue 1 (January 2004).

Herlocker et al. Evaluating collaborative filtering recommender
systems. In TOIS, volume 22, issue 1 (January 2004).
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Task-Driven Design and Evaluation

Design recommenders to support human information needs, not just
improve prediction error [McNee et al., 2006].

Task and context inform design of both recommenders and
evaluation strategies.

Opportunity to harness unique characteristics (or “personalities”) of
specific algorithms.
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Conclusion

Contributions
Design and evaluation of recommenders for reading lists

Method for biasing CF with authority metrics

CF works well for reading lists (surprising)

Open Questions
How to tell user that they have an important paper?

How to more accurately operate within topic scope?

Is SALSA misused?

Questions?
ekstrand@cs.umn.edu

Funded by NSF grants IIS 05-34939 and IIS 08-08692
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